

SERVICE ENGINEERS CAN NOW USE . .

The

 Finest Cored Solder in the World
solder is preferred by the leading manufacturers of radio and electrical apparatus because

- It is the only solder that guarantees flux continuity by providing 3 cores of flux.
- The Ersin Flux contained in the cores is much more active than plain rosin and ensures freedom from corrosive or dry joints. It is approved by A.I.D. and G.P.O.
- Joints are speedily made on oxidised surfaces - no additional flux required.

Single reel rate nominal llb. reels.

13	S.W.G.	-
16	S.W.G.	$-\quad 5 / 3$

Above prices subject to usual trade discount.
$\frac{1}{4}$ cwt.-toa lots at bulk rates. 6d. cartons for home use, available at most good radio and electrical dealers, ironmongers, etc.

Solz Pmorietors and Licaufacturers:
THE AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT CO., LTD.; WInder House, JDouglas St.ll London, S.W.I
Telephone: Victoria 3404,8

GXACTIUG covomons

THIS Waterproof Loudspeaker is specially suitable for Ships at sea, Railway Stations, Plating Shops, Foundries, etc., where high humidity and corrosive atmospheres preclude the use of ordinary P.A. Units.

TYPE No.: INDUSTRIAL No. 5 Impedance : 7,000 ohms, Depth : $44^{\prime \prime}$. Dia. $8 \frac{3}{4}{ }^{\prime \prime}$ tapped 5,000 and 3,000 . Rating $: 2 \frac{1}{2}$ watts peak A.C Retail price \&3. 10. 0 Delivery against contract No. only

goodmans
 INDUSTRIES ETMITED

Get it TAPED with LASSO

Lasso Identification Tape will solve all your marking problems and save pounds in time and labour. Lasso provides neat filmic markers which can be applied quickly and easily at any point without disconnecting the leads. No tools are needed to attach it, and it is durable and legible, impervious to heat and fluids.

Supplies of Lasso Tape are available only for high priority work owing to restrictions on raw materials.

CAbLE ASSEMBLIES LTD.
(Subsidiary of Herts Pharmaceuticals

Intensive research and experiment by scientists and technical experts in collaboration with the service departments, have resulted in important developments in design and technique. To-day the output of Osram Valves is devoted to the war effort. But Osram Valves for maintenance of existing equipments are available. Consult your usual supplier.

One day-perhaps soon-the progress and developments that have been made will be of the greatest interest and benefit to all. Then it will be, over to you--over!

Advu. of The General Electric Co. L.td., Magnet House, Kingsway, London, W.C. 2

This new and improved Universal Taylormeter gives a wide range of accurate measurements of both D.C. and A.C. The meter is fitted with a knife edge pointer and mirror and has four scales. The outer scale is 4 inches long and is used for all D.C. and A.C. ranges. The other scales are for Resistance, Capacity and Decibel measurements. The instrument is of First Grade accuracy on all ranges. An internal battery is supplied for Resistance measurements and covers from 1 Ohm to 1 Megohm and in addition a buzzer, also worklng off the internal battery, is also fitted for continuity checks. Autonaltic Overload protection is fitted to protect the meter against severe overloads. Three capacity ranges covering from : $0002 \mu \mathrm{Fd}$. to $100 \mu \mathrm{Fd}$. are available using an external source of A.C. The instrument reads full seale on $1 \mathrm{~mA} D . C$. and A.C. giving 1.000 Ohms per Volt.

We are very busy supplying large quantities of special test equipment äd measuring instruments for the use of the armed forces and our equipment is now in use all over the world. Our customers will understand why our instruments. are now in such short supply and why delivery is often delayed. Please send us your emqurries for test equipment or meosuring in* struments and we will be pleased to do our very best in meeting your requirements.

$$
\text { Size } 8 " \times 5^{\frac{1}{4}} " \times 3 \frac{1}{1} \text { " deep }
$$

Price \boldsymbol{E} 14.3.6
Please write for technical brochure

Send your enquiries to your usual foctor or direct to
, AYLOR ELECTRICAL INSTRUMENTS LTD., 419-424 Montrose Avenue, Slough, Bucks. Telephone: Slough 21381 (4 lines)

Whartedale

O.P. 3.

TYPE P.

OUTPUT TRANSFORMERS
O.P. 3

Type P
G.P. 8

Type 34
WHARFEDALE WIRELESS WORKS
hUTCHINSON LANE
BRIGHOUSE YORKS
'Phone : Brighouse 50.
Grams: Wharfdel.

 Loss Ceramics to the problem of Dielectric Loss in High Frequency circuits.
Years of laboratory research and development have brought these materials to a high degree of efficiency. To-day they are in constant use for transmission and reception, and play a vital part in maintaining communications under all conditions.

Made in Three Principal Materials

FREQUELEX-An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulaters, Valve Holders, etc.
PERMALEX-A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.
TEMPLEX-A Condenser matcrial of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

Bullers

LOW LOSS CERAMICS

BULLERS, LTD., THE HALL, OATLANDS DRIVE, WEYBRIDGE, SURREY
Telephone: Walton-on-Thames 2451. Manchester Office: 196, Deansgate, Manshester

Cuitomatic Radiotelephone

SIX CHANNEL
50/70 WATT LCE SERIES

- • •

NO OPERATOR NEEDED
Requires only AERIAL
DIAL TELEPHONE POWER SUPPLY

- - -

For
SHIP-TO-SHORE
POINT-TO.POINT TELEPHONE COMMUNICATION - -

LORAIN COUNTY RADIO CORPORATION, LORAIN, OHIO, U.S.A.
For details write to :-
Electronic Éngineering $\mathcal{S}_{\text {ervices, }}$ Ltch

$$
\xrightarrow{\text { sole вดITUSH }}
$$

[^0]
to attack. . .eyes are fixed on the Commander as he gives the enemy's bearing, range, course, speed. He orders the torpedoes to be fired . . . Once more Masterradio electrical equipment has helped to keep our sea lanes clear.

Masteradio VIBRATORPACKS

As supplied to the WAR OFFICE AIR MINISTRY, POST OFFICE Ond other GOVERNMENT DEPARTMENTS

behind the science of electronics

The pattern of progress in the science of electronics is determined by the achievements fredtring and developing new and more ficient electron vacuum valves. Therefore development-involving the intelligent appli. cation of many sciences-comprises the reab sation of many sciencer- comprises the
To create and produce the modern vacuum valve requires experience and skill of the high. ebt order in these muny sciences in addition to complete facilities for thetr application The list iacludes everything from chemistry and merallurgy - the echnology of glass fabrication and vacuum pumping-tophysics, optics. thermodynamies and most important of allElectronics

The resources and resourcefulness of Eimac laboratorieshaveaccounted formenyour. standing contributions to the science of Elec. tronics A fact which is attested to by the lead. ership which Fimac valves enjoy throughous the world. These comprehensive facilities are concinuously beine usilized eo achieve beeter and beteer resules for the users of Eimat valves

Eimac Engincering is devoted solely to the development and production of electern sacuum valves. However. since the eleceron sacuum valve is the heart of alf electronic devices it is advisable for users and prospective users of electronics to look first to the vacuum valves requircd. A note outlining your proh. lem will bring advice and assistance without cost or obligation

 and selt tallo ciry, Ulath

Moisture-proof . . .

"Stability in Insulation" and

 how it is achieved . . .This enlightening little work-"STABILITY IN INSULATION"-is the last word on the subject of modern insulation. It is full of facts worth noting.

Did you know, for example, that HY-MEG ensures electrical performance above reproach - even in tropical heat and after prolonged heavy duty - conditions, which are normally so harmful to ordinary impregnating varnishes? It tells also how HY-MEG's efficiency is unimpaired by damp or the deteriorating action of oils, acids and alkalis; such faults as softening of wire enamel and wire breakage are prevented by the use of HY-MEG.

Evidence of the superiority of HY-MEG is abundantly contained in the booklet, a copy of which will gladly be sent to you. Please apply on Business Heading or Card, enclosing 2d. to comply with the Control of Paper (No. 48) Order 1942.

'HY-MEG' IMPREGNA'TING VARNISH
V. 6934. Made specially for enamelled wire windings; but is equally suitable for Rayon and Glasscovered wire.

leave it to

our 'bralns trust' Have you a special problem: If so, let the experts, whose reseurch work produced ' H Y-MEU' aolve i. Their long and varied experience in otercoming insulation
difficullies is at your disposal.

LEWIS BERGER \& SONS LTD., (Established 1760) LONDON, E. 9 'Phone: AMHerst 3321

Sales Concossionaires:
HOLSUN BATTERIES LIMITED, 137 Victoria St., London, S.W.I

PRE-WAR STOCKS OF RADIO AND ELECTRICAL COMPONENTS

FROM FAMOUS MANUFACTURERS OFFERED

SERVICE KITS

SKV. 18.1 mft . $400 / 500 \mathrm{r}$: Electrolytic and 18 asstd. T.P Condensers, Resistors, Trimmers and S/Blica Condensers $10 / 9$.
SKW. 1. 32-ntif. Alumimiun Can Electrolytic 320 v. ant 25 asstil. 'T. P'.Cumdensers, Resistors, Trimmers and s/Mica Contocnsers, $12 / 9$.
 Flectrolytics, 18 issetd. 'T.P. Condensers, Resistors, 'J'rim mers and s/bica Condensera, $19 / 6$.
SKY. 18×8-mind. $450 \mathrm{v} . ; 18$ rintil. $400 / 500 \mathrm{v}$; 140 -mfil. 2n0 v. Hlectrolytics, 25 asstd. T. l'. Condensers, Resistors, Trimmers and s / Mi a Condensers, $35 /-$.
 525 v. , 16×16-rufd. 350 v . Flectrolytics; 6 each Trimmers. N/Mica Condensers ani T.P. Condensers, $37 / 6$.

RADIO MECHANIC'S KIT

\& suaners. 3 Screwdrivers, 1 coil hasulating Tape, 12 cajds Fuse Wire, 3 lengths Systoflex, 1 Instrument Test Iead with clips and plugs, I Universal Voltage dropper resistance. I 46 K̄ KC, I.F. Tranaiormer, Iron Cored, I set Aerial and Oscillator Coils Litz, Wound, $16 / 2,000$ metres. 18 -11fd. $400 / 500 \%$; $18 \times 16-\mathrm{mid} .350 / 450 \%$; $18 \times 8-\mathrm{mid}$, 400 v.: $132 \cdot \mathrm{mfd} .325$ r.; $140-\mathrm{mfd} .250$ v.; 124 - tuft . 250 s. Flectrolytics; 150 .asstd. T.P. Condensers, B/Mica Condensers and Resistors, 0 asatd. Volume Controls (wire wound), £6.6.0.

SPECIAL KIT

 $340 \cdot \mathrm{mfd} .250 \mathrm{v}$. Electrolytics; 1 set Aerial and Oscillator Coils; I pair I.F. 'Transformers, $46 \overline{\mathrm{n}}$ KC. Iron Cored; 3 B.A. 130 x Spanners; 3 Fine Screwdrivers; 1 Test Lead and clips; 2 voltage droppers, 2 and ,3; 2 Output TransCormers ; I 6 . Mains Transformer: 6 Wire Wound Volume Controls: 200 assti. Tubilar Yaper Condensers, Silver Hica. Condensers, Trimmers and Resistors; 24 asstd. 4 T- and 8-pin Valve Hohlers; 1 reel Insulating Tape; 6
Fuses, $£ 16.160$ Fuses, £16.16.0.

VALVES. American Types at B.O.T. controlled Retail Prices. For replacemerit purposes only. 6F5, 12F5, 12J5. $128 \mathrm{SF}, 9 / 2 ; 5 \mathrm{Y} 3,25 / 6,11 /-; 6 \mathrm{Q} 7,12 \mathrm{Q7}, 11 / 7$; 6Н6, 6K6, 6K7, 6L7, 12J7, 12SJ7, 36, 12/10; 6А8, 6B7, fisA7, 14)
Also British Valves at manufacturers' List Prices, AC/ME, $10 / 6 ; 80,6 \mathrm{X} 5, \mathrm{UU} 4$, UU6, UU7, 11/-; HL41DD, 'IDD4 4 11/7; AC/VP2, CL4, EF39, KTW61, Peu 45, BP41, $8 P 42$ T41, VP41, 12/10; DI diode lin. Peanut Valve with valveholder, $12 / 10$; ECH3, FC13, X63, 12Z3, $25 Z \overline{3}$ $3524,3525,14 /-$; AC6Fen*, EL35, Pen 46°, U21, 18/3 - Post Office Permit necessary.
l'rices include Purchase Tax. Add 3d. per valve post. VALVEHOLDERS-AMPHENOL TYPE. International or English Octal, chasgis mounting, 1/-. English Wafer type 4-,7-, 8-pin, 6 for $2 / 6$.
CAR AERIALS. Telescopic, scuttle fixing, extending to tit. 6 in. Ebonite Insulators, nickel tinish, 22/6 each.
WANDER PLUGS in a colours, 3/- per doz.
ELECTRIC SOLDERING IRONS, 60 watt, $200 / 250$ AC/DC. Chrome Plated, usually $13 / 9,9 / 6$.
LOUDSPEAKER FRETS. Coppered brass, $8 \frac{1}{2} \times 7 \mathrm{iu} ., 3 / 6$ $14 \frac{1}{2} \times 9 \frac{1}{2}$ in. $8 / 9$.
SCREENED INTERLACED FLEXIBLE MICROPHONE CABLE. Twin, 6 yards for $8 / 9$.
SPECIAL OFFER. Best Galyanised Bolte and Brage Nute, 9, 2, 4, 6 B.A. Large assorted packet, $3 / 6$.
IRON LEADS, with connect or, 23/36 Cirvular ドlex, $3 / 6$ each. LINE CORDS. 3- way heavy duty, hman., stio ohms, 9/6; 180 ohms. 13/6; 600 ohms, $15 / 9$.
CONDENSER DRIVES, slow motion. th. eplndle, $3: 1$, 1/6 each, extension apindle, $\frac{1}{t i n}$., 9d. each.
FUSE BOXES, twin, best bakelite, with two glass fuses, $2 / 6$ each.

CALLERS to Show Rooms,
2 HIGHGATE HIGH ST., N. 6. 'Phorie; MOUntriew 9431

AT BARGAIN PRICES

SYNCHRONOUS MOTORS

$200 / 250$ v. A.C. $12 \mathrm{~m} . a$. suitable for electric
clocks,etc. Supplied complete with gears, ea. $27 / 6$ RELAYS complete with circuit breaking switch.

Reliy and Metal Rectifier and Mains Transformer corplate. Input 200/240v. A.C. Output 12v,

MERCURY SWITCHES

$10 / 15 \mathrm{amp}$. in Ebonite containers, suitable for Thermostatic control of Electric Water
Heaters and relay circuits
H/6 VIBRATORS. 4-pin 6 volt, best quality
American
each
$15 / 6$

REVOLUTION COUNTERS

0-999 with gear drive and gears
each $3 / 6$ ELECTRIC POWER METERS, as new, pre war manufaciure, $1 /$ in slot type, suitable for electric fires, cookers, etc. Ideal for boarding houses,

TERMINAL BLOCKS

9 point heavy contact, best bakelite with metal cover each 2/6 WESTINGHOUSE METAL REGTIFIERS, type HI. $2 \frac{1}{2}$ V.D.C. 10 m.a., bargain, $3 / \mathbf{6} .22$ V.A.C. 12 V.D.C. I amp., suitablefor battery chargers, etc., $18 / 6$.

MAINS TRANSFORMERS

300-0-300, 4v. 6 amp., 4v. 2 amp., 2v. 1.5 amp.. 100 m.a. Heavy Laminations, pre-warstock, $27 / 6$ $350-0-350,6.3 v .3 \mathrm{amp} ., 5 \mathrm{v} .2 \mathrm{amp} ., 100 \mathrm{~m} . \mathrm{a}$ each $32 / 6$

7v. SUPERHET CONSTRUCTORS' KIT

The "LIBERTYSEVEN" All-Wave

 16-50m., 200-560m., 1,000-2,000m.Brief speciftation : Firequency changer with twin vialses, separate oscillator, M.E. Tuning indicator, Hiō KC Ironcored L.E.s. Separate tone and volume controls. j-wall output. 8in. P.M. speaker with latile and ontpul tratusoulput. 8in. P.A. speaker with lample and mitpuit trans-
fornter, all valven, chassis, practical ant Theoretical diagrams, Parts List. Nuts, Bolts and Wire, $\mathbf{8 1 7}$ GinS.
ready to ansentle. $200 / 250$ volts A / C. lie. $200 / 250$ volts A/C.
Oase and packing $5 /-$ e

CATHODE RAY OSCILLOSCOPES Constructors' Kits

Desigued ty moninent well known radio engineer. Alf parts supplied-theoretical and practical wiring diagrams and full
instructions for ussembly and ioperatiou. ex manufacturer's pre-war alock. Denonstration model can be seen working. specification : Magnetic leffection and foerssing. C.R.T. Jin. screen. Multi-stage amplitier and linear time base incorporated. Matns input
200250 v . 50 crcles. Anode potential $5,000 \mathrm{v}$. 22.17 .6 $200250 r .50$ crcies. Anode potential 5,000 v. 222.17 .6
Oscilloscope when completed is in chassis form, mounted Oscilloscope when completed is in chassis form, mounter on tubular metal frame.

Case and packiag 7/6 extra

A UTO - TRANSFORMERS

Heavy duty for $16 \mathrm{~m} / \mathrm{m}$ film projectors, etc. Input $200 / 250$ volts. Output $50 / 110$ voles, t,250 watts.
£14.14.0 each.

VOLUME CONTROLS. $1,5,10,20,25,50$ and 100 thousand oluns, $\frac{t}{}$, $\frac{1}{2}$. 1 and 2 meg, witlout switch, $4 / 9$ each.
As above, with swither, $6 / 9$; 100,000 ohms, t megohm
Double Fole Switeh, best American $7 / 6$: 2,000 olm wire wound, $3 /-: 1,000$ ohm only, carbon with only, adjustment, $1 / 6$ each.
LOUDSPEAKER TRANSFORMERS. Pentode Output, Mi, 50 m.a., 46.
Midget Multi Ratio $60: 1,80: 1,40:$ m.a., $8 / 6$.
Multi Ratio 60:1, $70: 1, \overline{5}: 1$ and push-pull, 75 mia.. 10/6. Mulki Ratio $40: 1,60: 1,80: 1$ and push-pull, 80 m. i., $12 / 6$. Pentode Output, 12/15 ohnıs, $100 \mathrm{~m} . \mathrm{a}, 12 / 6$.
Heavy Duty. Multi Ratio. 24: 1, $41: 1,48: 1,58 ; 1.82: 1$ 15/ 6
LOUDSPEAKERS. 3 -olim Voice Coit.
$6 \frac{1}{2}$. Colestion, with transtormer, $30 /-$
8 in . Rola, $19 / 6$; 8 in . Plessey, $18 / 6$; 8in. Goodman, 22/6 ; 10in. Mains Energised 250, 500 and 1,200 ohms. 35/12in. Auditorium P.M. Ticonal Magnet, 10 ohms, $1: / 1$ t watts. lixceptionally sturily construction, $\mathbf{8 7}$.15.6 each
AERIAL AND OSCILLATOR COILS. Best D.S.C. Wire wound, colour coded on bakelite formers, Short, Medium and Long Wave, $16 / 50 \mathrm{~m}$. : $200 / 550 \mathrm{~m} . ; 1,000^{\prime 2}, 000 \mathrm{~m}$.; with circuist diagram, 15/ the set
I.F. TRANSFORMERS. ${ }^{465}$ liCs. Ironed-corel Lit/ Wound, Alumininm Can. Lirnited quantity, $17 / 6$ nutched pair, 9/6 each.
WIRE END CARBON RESISTORS, new, ex-televisiun, $\frac{1}{6}, \frac{1}{2}, 1$ and 2 -watt. Assorted parcel of $100,30 /$.
1-WATT CARBON RESISTORS. Manufacturers' type, values unmarked, but ranging 20,000 ohms to 2 meg t 100
TUBULAR PAPER CONDENSERS, $350 / 500$ v., D.C. working. $.0001, .0003$-mtd, $4 /-$ doz. ; 001, 004 mfd., $6 /-$ doz 01 mid., 7/-doz; 03 mid., parcel or 50 for 27/6. Minimum orders 1 doz. any type.
PIEZO CRYSTAL MICROPHONES. 60D.B. below 1 tolt $30-8,000 \mathrm{cps}$. List price 6 gus. Offered at 3 gns. New, unused, cyrome finlsh.
PIEZO CRYSTAL MICROPHONES, 60D.B. at output level. High impedance, ted direct, no output transiormer necessary,
$45 /$.

The answers to simple problems are not alyays as simple as we once supposed. In communications, for example, current developments and constant refinements make additional demands on the designers of test equipmentthe problems of measurement acquire a new complexity. To meet these demands, however, the specialist engineers of Marconi Instruments unfailingly provide an extended
range, a still greater accuracy or an even finer delicacy of response, according to nécessity. But, as pioneers in the production of measuring devices for communications, Marconi Instruments have anticipated most of the requirements of the radio engineer. Probably they have already foreseen your particular problem. Our advisory service will be pleased to keep you informed.

MARCONI INSTRUMENTS LTD

ELECTRA HOUSE • VICTORIA EMBANKMENT • LONDON, W.C.2

gn town to-night, at famous theatres and fashionable restaurants, you will find Trix Sound Equipment, installed many years ago. Like the war workers in the great factories, they still trust Trix.
Amplifier (illustrated) Madel T633,
Undistorted output-30 watts. There are other Trix models from 5-500 watts.
watts. TRIX ELEGTRICAL CO. LTD., 1-5, Maple Place, Totenham Court Road,
London, W.1.

M.R. SUPPLIES

offer only miterial of the highest specification and give itmmediate delivery from stuck. All Transtormers ale continuolsily rated.
HOLIM shieldedANGING TRANSFORMERS. $200 / 250$ v. to $100 / 110$. and vice versal. 75 va. $296 ; 120$ van. $37 / 6$.
STEP-DOWN MAINS TRANSFORMERS, $200 / 250 \%$. (tajned) to $22 \mathrm{v} .2 \mathrm{amps}, 18 / 6$. Also lueavy duty molel with cast brackets and terminal panels, prim. : $200 / 250$ v (tapped) and sec.: 5 , 12 and 17 v, at full 6 ampa. 49/6. rarking and postage $2 / \%$ HEAVY DUTY OUTPUT TRANSFORMERS, Imited supply again avalabie. Handing 2\% watts A.C. Tapped prime, and sec, with b.p. and providing 11 hi-fi ratios from
$12-1$ to $75-1$. Weight approx. 10 lbs., finished hrackets and terninal panels. "W. W." spec, $59 / 6$. 1acking and postage $2 / .6$. gec. providing 8 ration with p.tp., $6 / 6$.
TRANSFORMER BOBBINS. Prim. tiapped 200/240 F . Secs. $: 350-0-350$ y. 75 mta , 4 v .4 a., 4 v . 3 a., core openithg if by if ins. and is ins. through, 18/6. Also with 6.3 v, 4 a., and 5 v. 3a., same price.
ROTHERMEL PIEZO-CRYSTAL PICKUPS. ROTHERMEL PIEZO-CRYSTAL PICKUPS. Senior (black bakelite) model, complete with arm, 78/9. STROBOSCOPIC SPEED TESTERS (50 cycle), showing 78,79 mad $80 \mathrm{r} . \mathrm{pm}$. On cardboard only, $1 /$ -
ROTHERMEL-BRUSH PIEZO-CRYSTAL MICROPHONES, bijou model in neat black housing with plated mounting boss (tapped $\frac{t}{2}$ in.-26) and screened lead, $42 / \mathrm{e}$. game make 29 . GRAMPIAN MOVING COIL MICROPHONES, in square suspension frame with mounting boss excellent response, \&4 $17 \mathrm{~s}, 6 \mathrm{~d}$. MICROPHONE STANDS, extending table, all chrom., 20/6. Collaysible extd., floor, MU-METAL M/COIL MICROPHONE TRANSFORMERS (ratio 80/1), miniature t5pe-also auitable for m/coil pick-ups, 21/GE.C. CURRENT-FED MICROPHONES. Require no amplifier-work with 15 ohm sjeaker direct from $12 v$, battery. Ideal for instructions and announcements. With appropriate coupling transforner, $\mathrm{f9} 1 \mathrm{17} \mathrm{s}$. 6 d . (hand model). G E.C. PROJECTOR SPEAKERS. Comprising 10-watt lo-ohm P.M. Uult with multi line transformer under weather-housing and 42 -inch all-metal exponential
 £8 18s. 6d. (carr. 7/b). Also 12 whtt Unit with square-flare horn, £11 3s. 6d.' (carr. $7 / 6$). Anticipate your future requirements while we can supply from our
present largestock. VITAVOX 12-INCH P.M. M/COIL SPEAKERS, Model KIE/20. 10 pratta. 15 ohtus, "cril. A real high fidelity speaker of the flost specification, $\mathbf{E P}^{7}$. (We cannot despatch these.) CABINET SPEAKERS (Suecial Ofter). Fine 10 -inch F^{\prime}. M M/Coil G.E.C. DE LUXE CABINET SPEAKERS (Special Ote er fine fine

METAL CABINETS for speakers or microphones. Octagonal btin. dia. with octagonal apening 3 tin. dia. Depth $3 \frac{1}{2} \mathrm{in}$. In cast aluminium finished black crystalline. Ideal for intercom. or tweeter. (These are new but very slightly store-soiled.) $\theta / 6$.
ELECTRIC ARC WELDERS for 6. or 12 -volt operation from car battery. 15 in. $10 n g$ w.th generous length of tough rubber cable with clip and two carbou electrodes. Ueeful to everybody, 35 :-

Please include sufficient for postage and packing.
M.R. SUPPLIES, 68, New Oxford Street, London, W.C. 1

WORLD'S LARGEST RADIO COIL MANUFACTURERS

RADIO FREQUENCY INDUCTORS INTERMEDIATE FREQUENCY TRANSFORMERS RADIO FREQUENCY COIL CHOKES
MICA COMPRESSION
CONDENSERS AIR DIELECTRIC CONDENSERS MICA MOULDED CONDENSERS SICKLES SILVER CAP

CONDENSERS GANGED PERMEABILITY TUNING COMMUNICATIONS EQUIPMENT F.M. EQUIPMENT PARTS U.H.F. RADIO EQUIPMENT SPECIAL ELECTRONIC

EQUIPMENT
The F. W. SICKLES Co. CHICOPEE, MA8s., U.s.A.

They fit inside a delicate ring, they are so small; but they are mighty in dependable performance for hearing aid apparatus. Longlived with low battery drain, RAYTHEON Flat hearing aid tubes give quality performance for electronic hearing aids.

LiTH

PRODUCTION CORPORATION HEARING AID TUBE DIVISION Newton, Massachusetts.
frempar
ARMY-NAVY 'E' WITH STARS Awarded all four Divisiont of Raytheon for Conelnuad Excellence in Production.

MÄllor VIBRATORS

ARE ALWAYS DEPENDABLE

Contacts in a vibrator take a lot of punishment. They must operate under widely varying conditions of temperature and must " make and break" 115 times a second. Small wonder that alert engineers think of contacts first when selecting a vibrator !
For over 20 years, Mallory has been industrial headquarters for every type of electrical contact. It has introduced new contact compositions... evolved better designs formulated improved surface finishes.
As a result of this wide experlence, Mallory equips its vibrators with special grade tungsten contacts which are cut in its own plant from material made to its own specifications. They give longer life, are subject to a minimum of erosion and transfer.
Mallory is ready to apply its special vibrator
"know how" to your specific applications.

P. R. MALLORY \& CO. INC. INDIANAPOLIS, INDIANA, U.S.A.
 Radio and Electronics Division

ALS0

"MYKROY" CERAMIC INSULATING MATERIALS

GENERAL ELECTRONIC VACUUM CONDENSERS

FOR THE FUTURE

These Manufacturers will help solve your post-war problems.
Rezister your name now for full detalls which will ber sent you when supply conditions again permit.

LIMITED
Kingcley Road, BIDEFORD,

WHEN the mission of complete victory is accomplished, General Instrument will help "Win the Peace" by making the best use of still greater knowledge and experience in the manufacture of variable condensers and drives.
THE GENERAL INSTRUMENT CORPORATION
ELIZABETH, N.J., U.S.A.

WHEN you think of plastic mouldings for post-war products we suggest you consult the Kurz-Kasch "Plastic Round Table '"-a group of specialists in design, materials, tool-up and moulding. Kurz-Kasch can give you complete service under one roof, one responsibility.

KURZ-KASCH INC.
Moulders of Plastics, DAYTON . OHIO U.S.A.

UNJTED INSULATOR CO., LTD. 12.22 LAYSTALL ST LONDON. E.C.I.
Tel. TERminus 7383 (5 lines) Grams: Calanel, Smith, Lóndon

Standard Amplifiers the activities of Acoustical include Special Amplifiers for Industrial Applications, Microphones, Transformers, Coil Winding, Sheet Metal Work, Stampings; Switch Assemłlies, etc.

"RIGHT ON TOP"

With this Raymart "Speed" Key, which \checkmark combines all that is best in British and American key design, you can, because of its extreme lightness of action and rigidity of construction, keep "right on top" of your transmitting. The key is fitted with heavy silver contacts.
The Wireless World test report confirms that it is "suitable for serious work,"

,

YOU CAN BUILD a standard G.P.O. type key if you buy the RAYMART KIT OF PARTS Price 7/6.
VALVES. We still have a limited number of AMERICAN Valves at standard Lease Lend Prices.
ALSO AVAILABLE. Raymart Coils for s/w work. Coil Formers and MicroVariable Condensers.
 Telephone:
MIDLAND 3254

48, Holloway Head, Birmingham, 1

Are you listening to a 'tired' radio? Do 'woolly' reception and distortion spoil your radio-enjoyment? . . . New Mazda Valves will put that right and give you listening that is really listening-crystal clear, accurate reproduction. Or perhaps you're one of the unfortunates whose set has ceased to function altogether. If valves are the trouble, ask your Dealer or radio repairer to fit MAZDA, for, in spite of heavy service demands, the Government has allowed us to release a
quantity of Mazda Valves for the listening public.
Your Dealer has all details of available types, but in case of difficulty write direct to us. We'll do all we can to help.

GQMOON CENHRAB iRADIO STOPSE

For Callers only.

PY Y

TELEVISION and S OUND RECEIVERS Table Model 815 A few only. iin. picture. All ready to switch or
£27. 10.0
Also Bainl, G.E.C. and Marconi Models. G.E.C. EXTENSION SPEAKERS. P.M. i highly polished walnut cabinets. Post, etc., EX-GOVT. MAINS TRANSFORMERS. SUIplus to requirements. Made by Philips. A.C. input $100 / 250$ v. Screcned primary, $300-0-300$ v. $80 \mathrm{~m} . \mathrm{a}$., арргох. 6.3 v., 12.5 v. Highly impregnated. Colour-coded leads to facilitate wiring.

MUTER PUSH-BUTTON UNITS.

12-Button Unit. Complete witl? buttons and escutcheor, as illustrated........ 8/6 8-Button Unit, with mains switch rated 125 v . at . 3 amp. and 250 v . at 1. amp. Complete with krobs but no escutcheon
HEAVY DUTY MAINS TRANSFORMERS. Input 200-250 v. A.C., 350-0-350 $1 \geq 0$ m.a., 4 シ. 2 a., 4 v. 3 a., 6.3 v. 4 a., with $4,500 \mathrm{v}$. winding for C.R. tube.
Weight 11 lbs.33/6 MAINS TRANSFORMER. $200 / 250$ v. A.C. 1-phase $300-0-300$ v., 250 m.a., 4 v. 5 a., 1-phase 2 v. 2 a. Size $4 \frac{1}{2} \times 4 \frac{1}{2} \times 3$. 1 . Wreight $10 \mathrm{lb} . . .$. ELECTRIC SOLDERING IRONS, 200-250 v., 65/75 w.

ELECTRO-MAGNETIC COUNTERS.

Ex-G.P.O., every one perfect, electromagnelic, 000 ohnt coil, cointing 10 9,999, operated from 25 v.-50 v. D.C. Has many industrial and domestic applications ... 6/LARGE CHROMIUM PLATED CHASSIS. Heary gauge steel, highly polished chromium with "mirror" finish. Size $193 \times 123 \times 3 \mathrm{in}$. (ends and sides). Drilled for 14 valves, transformer, choke, etc. A first-class job. Post free, 27/6.
CHASSIS $11 \times 91 \times 24$ drilled, p.f. $4 / 6$.
DROPPING RESISTANCES. Best quality 750 ohms, 3 a., 7/6. 1,000 ohms, . 2 a., 7/6 p.f' TRIMMERS. Postage stamp 40 PF ., $6 d$. Twin $40 \times 40 \mathrm{PE}, 1 /-$
TWIN FLEX. I, atest plastic covered. White and brown. 4/6 doz. yds.
PLATINUM CONTACTS. Double Spring, mounted on ebonite, $1 / 6$.

YAXLEY TYPE W/C SWITCHES. 2in. spindles, 4-way, 8-bank, with shielded osc. section, 6/3; 5 -way, 6 -bank, with 3 screened sections, $7 / 3$; 3 -way, 3 -bank, without shields, $4 / 6$.
OAK SWITCHES.
$2 \frac{1}{2} \mathrm{in}$. spindle, complete with knob 4-way, 2 -bank, with connect-2-bank, 3/3

EX-BAIRD High Voltage TELEVISION

 TRANSFORMERS
$6,000 \mathrm{v}$. approx. Fitted with Porcelain insulated terminals, as illustrated. Size $33 \times$ $6 \frac{1}{2} \times 31.20 /$. Post, etc., $2 /-$ 4,000 v. approx. Size 4 in,$~ X$ $3\} \times 34,10 / 6$. Post, etc., $1 / 6$.

VIBRATORS. 24 v. f-pin. Also 12 v. 7 -pin. each 15/-. MAINS TRANSFORMERS.

A special line of newly manufactured British transformers. $3011-0-300 \quad v$. at $80 \mathrm{~m} . \mathrm{a}$. 37 6. v., 3a., 5 v. 2a. size 376.

Post and packing, $1 / 3$ extra VALVE HOLDERS. Side contact
Mullard
Soctal 9 -pin, 9d. ea. Celestion Amphenol liternational Octal, $1 /=$ ea., 10 © doz. Int. Octal Base, 9d. ea., $7 / 6$ doz.

TUNING CONDENSERS.

3 -gang, 0.0005 mfc . withont trimmers, designed for motor drive. With large diameter driving disc and reduction gear, adaptable for slow motion manual drive (less motor)
$13 / 6$
See previous issues for other useful items.
23, LISLE STREET GERrard

MINIATURE or MIDGET

[^1]

Insula (hatin) = Island
Here's one more type of British made capacitor for which you can thank Dubilier - if you're in a thanking mood. We used to depend on foreign sources until Dubilier pioneered the 100% British Ceramic Receiving Capacitors. Now we can show them a thing or two. They are constructed

DUBILIER

 with low loss ceramic material and finished with wax or high grade enamel to suit operating conditions. Type C.P. are enclosed in a low loss high resistivity ceramic tube, which is hermetically sealed. This is an outstanding example of the small dimensions and high insulatory properties for which the whole range is notable.
Thenameis...Dubilier

STATIC TWO-DIMENSIONAL visual delineation of any recurrent law.
RELATIVE TIMING OF EVENTS and other comparative measurements with extreme accuracy.

PHOTOGRAPHIC RECORDING of transient phenomena.

SIMULTANEOUS INDICATION

 of two variables on a common time axis.INDUSTRIAL INDICATING and TESTING afford increasing scope for the Cathode Ray Tube as the only device with the above inherent features, of which the last is unique in the Cossor DOUBLE BEAM Tube.
The Model 339 Cossor Oscillograph thus equipped is invaluable on all problems of research, production or operational testing, when the effect examined is applied as a voltage. When recurrent the traces are studied visually and when transient are recorded photographically, using Model 427 camera.
A. C. CDSSDR LTv.,

INSTRUMENT DEPT.
Cossor House, London, N. 5
'Phone: CANonbury 1234 (33 lines).
'Grams: Amplifiers Phone London.

FAN DISC LOCK WASHER VIBRATION PROOF

Overlapping teeth cannot be flattened. Teeth grip and cannot shake loose. In steel or phosphor bronze. Sizes from 10 B.A. For all types of bolts and serews. SEND FOR SAMPLES, PRICES \& LITERATURE

radio frequency cables

for
 Electronics

Radio Equipment
Television
Telecommunications

We are specialists in the design, production and testing of all types of low loss and low capacity cables for use at high frequencies. We shall be pleased to make available the accumulated experience of our research and technical organisations in connection with special radio frequency cable problems directly related to the national effort.
 certainly save weight. For one thing you won't need washers. For another the Spire nut is lighter than an ordinary nut. And if we can make the Spire device part of the component you won't even need a Spire nut. You may say that weight saving in your case is a minor matter any way. But is it a minor matter to cut out all that fiddling and fumbling with nuts and washers?

Is the saving in cost a minor matter? Or
the strength and permanence of the fixing?

* A BETTER way of fixing Simmonds Aerocessories Limiled • Great West Road • London • A Company of the Simmonds Group

Wireless World

Proprietors: ILIFFE \& SONS LTD.

Managing Editor : HUGH S. POCOCK, M.I.E.E. Editor:
H. F. SMITH.

Editorial, Advertising and Publishing Offices:
DORSET HOUSE,
STAMFORD STREET, LONDON, S.E.i.

Telophone :
Waterloo 3333 (35 lines).
Telegrams
' Ethaworld,Sedist,London.',

Δ

PUBLISHED MONTHLY

Price: 1/6
(Publication date 25th of preceding month)

Subscribtion Rate:
Home and Abroad 20/- per annum.
Radio • Electronics • Electro-Acoustics
34th YEAR OF PUBLICATION
DECEMBER 1944
MONTHLY COMMENTARY 353
FEEDBACK AND THE LOUDSPEAKER By S. W. Amos 354
8,000,000 NEW BROADCAST SETS
By R. W. Hallows. 358
SUPER-REGENERATION
By O. J. Russell 361
ARMY SETS 365°
RANDOM RADIATIONS By " Diallist" 3^{67}
WAR REPORTING 369
STANDARDISED COMPONENTS

1. PROPERTIES OF RESISTORS
By Thomas Roddam 370
INTERFERENCE FROM RADIO HEATERS 374
WORLD OF WIRELESS 376
LETTERS TO THE EDITOR 379
RECENT INVENTIONS 382
UNBIASED. By Free Grid 384

Branch Offices ;

Coventry :

8-10، Corporation Street. Teiephone: Coventry 5210. Telegrams:
"Autocar, Coventry."
Birmingham:
Guildhall Buildings,
Navigation Street, 2.
Telephone :
Midland 2971 (5 lines) Telegrams : "Autopress, Birmingham."

Manchester :
260. Deansgate, 3. Telephone :
Blackfriars 4412 (4 lines). Telegrams:
" Iliffe, Manchester."
Glasgow:
26b, Renfield Street, C.2.
Telephone: Central 4857. Telegrams: "Iliffe, Glasgow."

Δ

As many of the circuits and apparatus described in these pages are covered by patents, readers are advised, before making wse of them, to satisfy themselves that they would not be infringing patents.

For a quarter of a century Wearite Components have served faithfully the needs of the Radio and Electrical Industries and have made many outstanding contributions to the War effort.

In an industry that is ever changing the Wearite policy of continuous research and development has not only kept pace with progress but has done much to further technical advancement in the field of

VIBRATORS TRANSFORMERS SWITCHES and COILS

The Isle that Grew from the Sea

A little land above the surface of the sea ; white surf and leaning palms . . . but underneath, out of sight, the foundations go down deep and wide to the bed of the ocean. So, too, with great industrial organisations like that of Philips. Their
achievements and the high reputation of Philips products are broad-based on persistent research, skilled tech. nicians, highly-developed factories and long-accumulated knowledge and experience of the application of electricity to the needs of the modern world.

$$
\begin{aligned}
& \text { PHILIPS } \\
& \text { LAMPS } \star \text { RADIO } \star \text { X-RAY }
\end{aligned}
$$

COMMUNICATIONS EQUIPMENT AND ALLIED ELECTRICAL PRODUCTS PHILIPS LAMPS LIMITED, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C. 2 (IooJ)

Wireless World

 Radio - Electronics • Electro-AcousticsVol. L. No. 12

Monthly Commentary

PostWar Austerity

It would be ridiculous to deny that the elemental needs of life such as food, shelter and clothing must always take precedence over artificial luxuries. When the war ends there will be a shortage of these necessities for the civil population and for men demobilised from the Forces; the diversion of our national resources to meet this shortage must naturally be given the highest priority. No wireless man is likely to be so blinded by his own specialised interests as to claim seriously that matters should be arranged otherwise. He would not plead that, say, broadcast receivers should come before the houses in which they will eventually be installed.

But there seems to be a risk that this idea of post-war austerity may be overdone, so far as the wireless industry is concerned, and that a policy of catering for the bare minimum of public requirements for a long and indefinite period may have disastrous results. The industry is a highly technical one, and perhaps its greatest asset will be the large reserve of highly trained and experienced technical man-power that will be available to it after the war. If, through the policy of the industry or through Government direction, that man-power is unnecessarily diverted into other fields, British radio in all its branches will suffer a loss from which it may take a long time to recover.

Of course, it must be conceded that so far as broadcast receivers are concerned, the industry might well devote the immediate post-war period to the production of simple sets for the replacement market. But, while it is cloing this it should be planning more ambitious sets to be put into production as soon as materials and man-power become available. It cannot be too strongly urged that, without a flourishing home market in such specialised apparatus, we cannot expect to secure a reasonable share in export trade.

It has long been a matter for reproach that too many sections of the broadcast receiver industry have tended to ignore the specialised type of set, and with few exceptions, have concentrated their efforts on productions of basic uniformity which depend for their individuality on external or superficial details. This theme is expanded elsewhere in this issue by a contributor who describes in
some detail the various types of receiver for which he considers a large demand will exist. It cannot be denied that if a general manufacturing policy on the lines described could be successfully embarked upon, the home market should be able to "carry" a large and flourishing export trade.

> Radio
> Heater
> Interference

Elsewhere in this issue a contributor makes some constructive suggestions for controlling the radiation of interference from radio-frequency heating equipment. Though this method of heating may well become industrially the most important of all the offshoots of wireless technique it is likely to suffer many setbacks unless the question of interference is tackled vigorously and rationally from the outset. That the problem is a serious one cannot be denied, from both the technical and legal aspects.

In effect, our contributor pleads for a spirit of sweet reasonableness in the official control of radiation, and that each case should be taken on its merits. With that contention few will disagree ; the technique of radio heating is so new, and its applications so little explored, that any attempt to frame strict regulations would inevitably hamper its development.

One of the proposals is that the location of the radiating apparatus, as well as the radiated field of interference, should be taken into account. To take a very simple hypothetical case, a higher level of radiation on a frequency of $500 \mathrm{kc} / \mathrm{s}$ (the international maritime distress call frequency) would be permissible from apparatus installed at an inland factory than from equipment working at a site near the coast.

Until fuller experience of the working of radio heaters is gained, a "code" such as that proposed by our contributor should, we think, enable the radiation of interference to be kept within reasonable bounds, provided that those responsible for operating the gear are alive to their responsibilities. But, before any code can become fully effective and its administration be practicable, we think that steps must be taken to establish the principle that interference from a radio heater with legitimate wireless reception is a "nuisance" in law.

FEEDBACK And the LOUDSPEAKER A Little is Good : More May Not Necessarily be Better

IT is well known that if a movingcoil loudspeaker is driven by a pentode or tetrode valve (or any other type of generator which may be regarded as a source of approximately constant current) an excessive ligh note response results. It is customary to overcome this tendency by the use of negative feedback or by means of a condenser connected across the output transformer primary. It is instructive to enquire the reason for this excessive " top lift." It is due to the fact that the speech coil of a moving-coil loudspeaker is not a pure resistance but has inductance also. In order to understand the mechanism of the process consider the diagram of 1"ig. I, which illustrates a somewhat simplified version of the full electrical equivalent circuit of a moving-coil loudspeaker.* In this R and L represent respectively the resistance and inductance of the speech coil. Using the conventional electro-acoustic relationships L_{m} is intended to represent the mass of the diaphragm together with that due to the air load (the "accession to inertia" of McLachlan) and C_{s} represents the " compliance," i.e., the reciprocal of the total stiffness (that of the centring spider, the surround of the speaker diaphragm and the added stiffness supplied by the air load). Lastly, and this is most important for the solution of our problem-a certain additional resistance R_{r} is " reflected " into the electrical impedance of the loudspeaker which represents the actual power which is radiated by the loudspeaker in the form of sound. We could catl it, in fact, the " radiation resistance" of the loudspeaker. The power developed in the resistance R of Fig. I is sheer waste : it serves only to heat up the wires of the speech coil. The only useful power is that developed in the radiation resistance, and in order to solve our problem we have only to decide how the current in R_{r}

[^2]By S. W. AMOS,

B.Sc. (Hons.), Grad.I.E.E., A.M.Brit.I.R.E.

> Due to the variation of loudspeaker impedence with frequency and the consequent change of voltage across the speech coil, negative feedback may result in loss of "top." This article points out the pitfalls and shows how they may be avoided.
varies with frequency for triodes and pentodes.

The impedance measured across the terminals $A B$ in Fig. I varies somewhat as shown in Fig. 2, which is taken from "Radio Designers' Handbook" by F. Langford Smith (p. 20). The figure commonly quoted for the impedance of a loudspeaker is the value at $400 \mathrm{c} / \mathrm{s}$ at which frequency the impedance is approximately a pure resistance. At very

Fig. i. Equivalent electrical circuit of moving-coil loudspeaker.
high frequencies, say $10,000 \mathrm{c} / \mathrm{s}$, the impedance is predominantly inductive. Suppose the impedance is 2 ohms at $400 \mathrm{c} / \mathrm{s}$ and 12 ohms at $10,000 \mathrm{c} / \mathrm{s}$. The usual matching rule for triodes is that the load should be twice the valve impedance at $400 \mathrm{c} / \mathrm{s}$; this calls for a generator resistance (r_{a} in Fig. 3) of I ohm. This will be the value of the anode AC impedance of the triode reflected in the secondary side of the output transformer. The current in the circuit is thus: $\frac{E}{1+2}=\frac{E}{3}$ at $400 \mathrm{c} / \mathrm{s}$ and $\frac{\mathrm{E}}{1+j 12}$ which is roughly
equal to $\frac{E}{I 2}$ at $10,000 \mathrm{c} / \mathrm{s}$. Hence ${ }^{\prime}$ at $10,000 \mathrm{c} / \mathrm{s}$ the current falls to one quarter of its value at $400 \mathrm{c} / \mathrm{s}$. This naturally tends to cause a falling-off in the radiation from the loudspeaker at high frequencies, but this is off-set by several factors. One is that L_{m} gets smaller, so increasing the current in the secondary circuit of Fig. I as the frequency rises, for the area- of the diaphragm which radiates effectively gets progressively smaller until ultimately at $10,000 \mathrm{c} / \mathrm{s}$ only the inner radius of the cone (if any part at all) is useful. Also, as frequency increases the radiation from the loudspeaker becomes more and more concentrated into a beam along the axis. This also tends to increase the apparent output at these high frequencies. It is interesting to consider how the PD across the speech coil varies with frequency. At $400 \mathrm{c} / \mathrm{s}$ the PD developed across the speech coil is $\frac{E}{3} \times 2=\frac{2 E}{3}$ volts and at $10,000 \mathrm{c} / \mathrm{s}$ this becomes $\frac{\mathrm{E}}{\mathrm{I} 2} \times \mathrm{I} 2=\mathrm{E}$ volts. At $10,000 \mathrm{c} / \mathrm{s}$, therefore, the PD increases to I. 5 times its value at $400 \mathrm{c} / \mathrm{s}$. This is a slight increase, and may very easily be masked in practice by the usual falling-off in output transformer performance at such high frequencies. If for any reason one applies negative feedback to a triode ("gilding the lily," of course) the output voltage will become constant and so the current will fall at $10,000 \mathrm{c} / \mathrm{s}$ to even less than its normal quarter of the value at $400 \mathrm{c} / \mathrm{s}$. We shall therefore lose " top" and the loss will be $20 \log 1.5=3.5 \mathrm{db}$.

If the generator feeding the loudspeaker is a pentode, then at $400 \mathrm{c} / \mathrm{s}$ the impedance at the transformer secondary will, in practice, be about five times that of the loudspeaker, i.e., about ro ohms. Thus the current will be $\frac{E}{10+2}=\frac{E}{12}$. At 10,000

DECEMBER, 1944
c / s this falls to $\frac{\mathrm{E}}{10+j 12}=\frac{\mathrm{E}}{\mathrm{I} 6}$ roughly, so that the change in current is in the ratio $4: 3$. The current is then very roughly constant, which means that the current in "the radiation resistance at high frequencies is far more
of a triode. If it is reduced below that value then " top cut" occurs. This "top cut," though it is not a severe loss (only 3.5 db . in the above calculation), seems to be very obvious in the reproduc-
frequency, as shown in Fig. 2 (a). This may be explained very easily with reference to Fig. I. It is clear that maximum current flows in the secondary circuit at the resonant frequency of the

Fig. 2. Variation with frequency of speech coil impedance (a) and phase angle (b) of moving-coil loudspeaker.
than is necessary to produce the required effect. This, then, is the reason for the excessive high-note emplasis given by pentorles. It is due to the fact that the reactance of L_{m} is too small, compared with the effective R_{a} of a pentode at the secondary of the output transformer, to reduce the current to the right proportion. For the triode the ratio was $1: 4$ so that the audible difference between their respective performances at $10,000 \mathrm{c} / \mathrm{s}$ is given by 20 log $4 \times \frac{3}{4}=20 \log 3=9.5 \mathrm{db}$. which agrees well with aural estimates of the superiority of the pentode over the triode as far as "top" is concerned. The PD across the speech coil, for the pentode, rises from $\frac{E}{I 2} \times 2=\frac{E}{6}$ at $400 \mathrm{c} / \mathrm{s}$ to $\frac{E}{16} \times 12=\frac{3 E}{4}$ at $10,000 \mathrm{c} / \mathrm{s}, \mathrm{a}$ rise of 4.5 times. If considerable feedback is used here, sufficient in fact to keep the PD constant, then the audible loss of top will be $20 \log 4.5=13 \mathrm{db}$. To reduce the top to the level given by a triode, a loss of 9.5 db . is called for. So here again excessive feedback causes frequency distortion. Evidently there is an optimum degree of feedback to apply to a pentode ; it is that value which reduces the R_{a} of a pentode to a value typical
tion from anıplifiers using output pentodes and considerable feedback. There is a peculiar " deadness" about the quality which is very depressing, and some means of counteracting it is desirable. There are two possible courses to adopt: either one can calculate the necessary degree of feedback to give the right amount of high note loss, or else-and this is possibly the better way-one can use a large degree of feedback (thus achieving considerable damping and great reduction of harmonic distortion) and apply " top boost" artificially, either by including tone control circuits outside the feedback loop or making the feedback frequency discriminating.

Fig. 3. Essential elements of output circuit; r_{a} and E are the equivalent valve AC resistance and EMF appearing at the secondary of the output transformer.

There is also a rise in loudspeaker impedance at a low
tuned circuit formed by the inductance I_{m} and the capacitance C_{s}. This is known as the bass resonant frequency of the loudspeaker, for it usually occurs between $50 \mathrm{c} / \mathrm{s}$ and $100 \mathrm{c} / \mathrm{s}$, and at this frequency the rise in impedance is of the same order as the rise at $10,000 \mathrm{c} / \mathrm{s}$, i.e., it is about six times the value at $400 \mathrm{c} / \mathrm{s}$; but there is this difference about the low-frequency resonance, namely, that the impedance of the speech coil becomes purely resistive at this frequency. This rise in impedance has the same consequence as the high-frequency rise, namely, that an increase in the PD across the speech coil occurs, the increase being small in the case of a triode generator and considerable for pentode or tetrode output valves. As in the case of the high-frequency impedance rise, this increase in impedance brings about a fall in output power when the generator is a triode and an increase in power when a pentode is used. The drop in power with a triode is generally offset by the increase in efficiency of the loudspeaker which occurs at the bass resonant frequency. It follows, therefore, that pentodes give an abnormally high output power at the bass resonant frequency. Any undue rise in output power here is undesirable, of course, so that

Feedback and the Loudspeaker-

there is no question of there being an optimum value of feedback to cure it. The more feedback the better as far as the low frequency resonance is concerned. Suppose we wish to apply negative feedback to an amplifier with the circuit diagram given in Fig. 4. This has a push-pull output incorporating two pentodes. Let us suppose that these are of the PEN 45 type, which can accept a maximum input peak signal of 8 volts. If the HT supply is, say, 250 volts, then the anode potentials of each valve will probably swing from 50 to 450 volts (peak value 200 volts) when the valves are delivering their maximum power utput. This represents an amplification of $\frac{200}{8^{\circ}}=25$ times. The phase-splitter will probably give a stage gain of $\frac{4}{5}$ times and the preliminary AF stage, if the valve is of the $\mathrm{SP}_{4} \mathrm{I}$ type, can be made to amplify 200 times*, so that the overall gain, from first grid to final anode; is $200=\frac{4}{5} \times 25=$ 4,0oo times. The necessary peak input for maximum power output is hence $\frac{200}{4,000}=0.05$ volt. We want to apply negative feedback.
considerably simplified. Suppose we decide to use the optimum degree of feedback. It is known that the anode $A C$ resistance R_{n} of a valve is effectively reduced by the use of negative feedback according to the expression : $\mathrm{R}_{a}^{\prime}\left(\mathrm{R}_{a}\right.$ with feedback $)=\frac{\mathrm{R}_{a}}{\mathrm{I}+\mathrm{M} \beta}$ in which $\mathrm{M}=$ amplification without feedback and $\beta=$ feedback fraction.

Fig. 5. One method of applying optimum feedback to the amptifier of Fig. 4.

December, 1944
which is quite a convenient value. This represents a considerable degree of feedback and reduces all forms of distortion in the ratio of

$$
\frac{I}{I+M \beta}=\frac{I}{25}
$$

so that the performance of the

Rearranging this, we"have

$$
\beta=\frac{\mathrm{R}_{a}-\mathrm{R}_{a}^{\prime}}{\mathrm{MR}_{a}^{\prime}}
$$

and putting $\mathrm{R}_{a}=50,000$ ohms, $\mathrm{R}_{a}{ }^{\prime}=2,000$ ohms and $\mathrm{M}=4,000$ for the problem under consideration we find
$\beta=\frac{50,000-2,000}{4,000 \times 2,000}=\frac{6}{1,000}$.

Fig. 4. Basic circuit of the amplifier used by the author.

One way of applying feedback is as shown in Fig 5, in which for convenience the circuit has been

[^3]The input then necessary for maximum output will be approxi-
mately $\frac{200 \times 6}{1,000}=1.2$ volts peak,
amplifier can be considered satisfactory.

Suitable values for R_{1}, R_{2} and C_{1} to give the calculated degree of feedback are 1,500 ohms, 250,000 ohms and $0.25 \mu \mathrm{~F}$ respectively. The author has been using for some time an amplifier employing the circuits of Fig. 4 and Fig. 5 and using the values of feedback components just quoted, and its performance is particularly pleasing.

As the degree of negative feedback has been calculated to give a level frequency response, there is no point in including condensers across the primary of the output transformer. If these are included, then frequency distortion will be introduced.

If it is desired to take the feedback voltage from the secondary of the output transformer, then the above calculations can be repeated for the new value of voltage gain. Suppose the output valves are rated to give 8 watts and that the nominal speech coil impedance is 2 ohms. Then the RMS voltage developed across the speech coil is $\sqrt{2 \times 8}=4$ volts, so that the peak value is 1.414×4 $\rightleftharpoons 5.656$ volts and the voltage gain of the amplifier is 113 times. By repeating the calculations using this new figure we find that the optinum degree of feedback is given by :-

December, 1944

$$
\beta=\frac{50,000-2,000}{113 \times 2,000}=\frac{1}{5}
$$

approximately.
This can be arranged as shown in Fig. 6. The resistance R_{1} in conjunction with the bias resistor R_{2} (which is not shunted with the usual bypass condenser) forms a potential divider which applies one-fifth of the output voltage back to the input of the first valve. The reduction in the value of the grid bias resistor brought about by the circuit is very small and may be neglected.

Consider now degrees of feedback other than the optimum value. If more than optimum feedback is used, some " top boost" will be required : if less, then " top cut" will be necessary.

Suppose the whole of the secondary winding of the output transformer is inclucled in the cathode lead of the first valve, thus giving far more than the optimum degree of feedback. Using the figures quoted, it is easily shown that the K_{a} of the output stage is reduced to roughly 600 ohms by this means, hence a small amount of " top cut" will occur. On the other hand, if a particularly sensitive amplifier is required and it is therefore decided to use a degree of feedback smaller than the optimum value, then " top lift " is inevitable. To compensate
frequency, but they also introduce phase-shifts which are a function of frequency. It is not proposed, therefore, to describe the design of such systems in detail here: but it is interesting to note that if a condenser is connected in parallel with the 1,500 ohms bias resistor in Fig. 4 then " top lift" results. On the other hand, if an inductance is connected across it then " top cut" results. Incidentally, a convenient means of obtaining " bass lift " is by reducing the value of the condenser in the feedback chain. The author uses a o. I $\mu \mathrm{F}$ component instead of the $0.25 \mu \mathrm{~F}$ condenser of Fig. 5 in order to compensate for the bass loss inevitable with a small loudspeaker baffle.

Perhaps a better way of counteracting small degrees of frequency distortion-it is certainly more amenable to calculation-is to use a frequency discriminating network in the amplifier placed outside the feedback chain. Suitable circuits for " top cut" and " top lift" are shown in Fig. 7 (a) and (b) respectively. They are connected in the input circuit of the first AF amplifier.

The circuit of Fig. 7 (a) gives an attenuation of $\frac{R_{3}}{R_{1}+R_{3}}$ times at very low frequencies when the reactance of C_{1} is infinite. At very high frequencies this becomes

$$
\begin{aligned}
& \frac{\mathrm{R}_{3}}{\mathrm{R}^{\prime}+\mathrm{R}_{3}} \text { in which } \\
& \mathrm{R}^{\prime}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \text {. }
\end{aligned}
$$

In this the reactance of C_{1} has been assumed zero. We thus get that the degree ot top lift is given by

Fig. 6. Another method, the feedback voltage being taken from the secondary of the output transformer.
for this frequency distortion we can use frequency discriminating feedloack. It is extremely difficult however to calculate the constants for feedback circuits of this type, for not only do they introduce attenuation which varies with

$$
\begin{gathered}
20 \log \frac{\mathrm{R}_{3}}{\mathrm{R}^{\prime}+\mathrm{R}_{3}}-20 \log \frac{\mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{3}} \\
=20 \log \frac{\mathrm{R}_{\mathrm{t}}+\mathrm{R}_{3}}{\mathrm{R}^{\prime}+\mathrm{R}_{3}}
\end{gathered}
$$

Suitable values for a lift of 3 db . are $\mathrm{R}_{1}=100,000$ ohms, $\mathrm{R}_{2}=$

70,000 ohms and $\mathrm{R}_{3}=100,000$ ohms. The capacitance of the condenser C_{1} decides at what frequency the boost begins. A

(b)

Fig. 7. Suggested tone-control circuits for "top boost" (a and " top cut" (b)
suitable value is o.or $\mu \mathrm{F}$, but it should be pointed out that exact compensation for the " top cut" due to feedloack is probably impossible. The corresponding formula for the "top cut" introduced by the circuit of Fig. 7 (b) is: $\quad 20 \log \frac{\mathrm{R}^{\prime}}{\mathrm{R}_{1}+\mathrm{R}^{\prime}} \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}$ in which $R^{\prime}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}$

"FORTISAN" FIBRE

THIS product of British Celanese, Ltdl., is a pure form of regenerated cellulose and is characterised by its great strength and the fineness to which it may be drawn.
"Fortisan" yarns are three times as strong as natural silk and can be produced in filaments one-tenth the diameter of silk. They are therefore specially suitable for covering the finer gauges of instrument wires. They increase the strength of the covered wire, and the physical and chemical uniformity of the covering is a great advantage where exact winding dimensions must be rigidly adhered to. Heat resistance is superior even to cotton and the moisture content is as low as 9 per cent. It is resistant to mould growths and will take any of the impregnating materials which are normally used for cotton- or silkcovered wires

8,000,000 NEW BROADCAST SETS What Should They be Like?

WHEN the war is over the wireless industry of this country will find itself in a truly enviable position: it will in a word be presented with something like a clean slate upon which to write its own future. No such far-reaching opportunity has ever before occurred or is likely to occur again. During the long years of the war the industry has had perforce to devote nearly the whole of its activities to supplying naval, military and air needs ; its normal function in meeting the requirements of the civil population has lain dormant. When peace returns it will be reborn with almost limitless opportunities. Will it seize those chances with both hands and make the fullest use of them? Or will it be content to drift taking the comfortable line of least resistance, as in the past it has too often been inclined to do? Devoutly as one hopes that the rebirth of the industry will see a vigorous forward policy, it is difficult to answer these questions now, for there are as yet no certain indications of what is likely to happen.

It has been said that the saddest thing that can happen to a young man is to be left by the will of some well-meaning but misguided relative an income just sufficient to live on. After the war our wireless industry will be very much in the position of the young man with the legacy, for even if it makes no effort its livelihood will be assured, not indefinitely it is true, but for a long time to come. So great and so urgent will be the demand for receiving sets that anything turned out by the factories for some little time will be certain to find its market, so long as it works, is fairly easy to operate and is housed in a cabinet that is not positively repulsive to the eye.

Let us consider some facts and figures. Of the ten million or more wireless sets in use in this country alone only a very small proportion will be less than five years old, for comparatively few

By R. W. HAllows, M.A., A.M.I.E.E.

were in stock when the war broke out (the autumn production drive was not under way in September, i939), and since that time there has been but a thin trickle from the factories, while imports have been on the most restricted scale. Probably, then, at the very lowest three out of every five listeners-I should say that four out of five would be nearer the mark-are looking forward to the time when their present sets, which have given such long service and are now showing sigus of senile decrepitude, can be replaced by new ones. That gives a potential immediate market in the lome country for between six and eight million sets; and there are the needs of the Empire to be thought of as well.
If the policy adopted is to concentrate on the production of low-priced sets of mediocre performance business will undoubtedly be brisk-for a time. But it is equally certain that
the kind will happen; but the temptation will be there and it will be strong.

What do I suggest that the wireless industry should write on the clean slate which it will have when the war is over? Well, first of all I want to see the public educated up and not down. There can be little question that such education as came its way from the industry before the war was definitely of the downward type: not only the man of modest means but also many of those better blessed with this world's goods had come to believe that there was little point in spending more than twelve or fifteen pounds on a wireless set, unless a radiogram was required. For such a sum you could take your choice of many makes, each capable of bringing in a number of foreign stations (if you wanted them) on the long, medium or short waves; each with the simplest of controls, and each giving reproduction which, if falling a good deal short of what a musical ear would have liked, was not actually unpleasant and

One of the things for which the author of this article pleads is an adequate short-wave tuning system-a rarity even in the best of pre-war broadcast receivers. Here is one of the exceptions; the Murphy A76, which gave many of the refinements of a "communication" receiver at moderate cost.
there will be a day of reckoning. Ours is not the only country with a wireless industry, and, were our own firms to be largely content with a non-progressive policy, those of other countries would soon begin to take a larger and larger share of the home and Empire markets. I do not for one moment believe that anything of
was, at any rate, quite up to the standard that you had been brought to expect from the wireless loudspeaker.

Parallels have often been drawn between the history of wireless and that of motoring. In many respects they have run on much the same lines; but there has been this big and important difference.

December, 1944

$8,000,000$ New Broadcast Sets-

The motor car industry supplied the little man with cheap, reliable cars that gave him the service that he needed; but it did not stop there. It educated those who could afford to pay more up to the special merits in their own ways of the sports car and the luxury car. On the other hand, the wireless industry has too often gone off at half-cock in such sporadic attempts as it has made at upward education.

There was, if you remember, some kind of effort in the early days of broadcasting to teach the listener that better quality than he had been used to could and should be his. "Bring out the bass" was the cry that year. The public responded eagerly and much might have been done then and in the future to develop a taste for genuine quality; but it wasn't done and the man in the street came to accept as right and proper the invisible carpet-beater that was apparently installed in the cabinet of his new receiver.

Then there was the slogan about the world's being your oyster if only your receiver had a short-wave range to act as the opening knife. Again the public showed itself ready and willing to grasp what was promised. But the process of opening the oyster with the kind of knife provided proved so difficult that in the majority of instances the shortwave range was little used after perhaps the first fortnight of ownership. Given reasonably simple tuning arrangements a large section of the public might well have adopted short-wave listening as a hobby, especially if there had been some helpful propaganda at the time. But give the ordinary man or woman jerky, backlashy tuning and a pointer as thick as a poker moving over a scale on which the whole of the 19-metre band occupies less than a quarter of an inch, and the process of finding a desired station is too difficult to be fun. It is still more difficult and still less fuin when second-channel reception of short-wave stations occurs inside

Another "semi-communication" set introduced just before the outbreak of war was the Pye "International." Thanks to the use of a bandspread tuning system, it made short-wave work a practical possibility for the ordinary listener.
the limits of the band on which they are working
"But," I hear someone object, " how on earth can you expect velvet-smooth tuning, bandspreading and second-channel suppression in an "all-wave"" receiver costing $£ 15$ or so?" I don't, and that's the whole point. I no more expect to find these things in such a set than I expect to find terrific acceleration and the ability to top 80 m.p.h. in a saloon car costing a couple of hundred pounds and designed for family use. No motor car manufacturer has ever led me to believe that such things are possible. But if I do want to break

$8,000,000$ New Broadcast Sets-

but the substance of great music.
The man in the street should also be given opportunities to learn the truth about long-distance reception, particularly on the short waves. What he should know is that though it will bring in some of the " easier" stations, the low-priced family receiver is not and cannot be the ideal instrument for the purpose. He should certainly be educated out of the evil habit of judging the merits of a domestic set by the number of foreign stations that it can receive! If we are to retain the inexpensive "all-wave" family set (as I think probably that we must), there must also be higher-priced models available with greater sensitivity and far better tuning arrangement on the short-wave range. I would also like to see more "sports models" in the form of simplified versions of the communication receiver.

For the home market I suggest the following range of wireless receiving sets. I can give no indication of their prices, since I do not know what post-war production costs are likely to be nor for how long purchase tax may be retained. Neither makers nor users, though, should any longer have to be shy of increased numbers of valves: the lessons learnt and the plants installed during the war should make for the reduction of the cost of replacement valves.
(1) The Radiovisiogram de luxe. This instrument would be the finest product of the wireless manufacturers' art. The audiofrequency side, designed to provide true high-fidelity reproduction, would have separate highpass and low-pass circuits, each operating its own loudspeaker and each with its own volume control. Automatic contrast expansion would be available at will. On the RF side different circuits, each designed for its own special job, would be used for local and distant reception. Bandspreading and smooth, easy tuning would be features of the short-wave range.
(2) The Radioceiver de luxe. Designed for those who want the best that wireless can give in sound reproduction combined with good long-distance performance when required. The same instrument as No. r, but less the gramophone mechanism and the vision section.
(3) and (4). Instruments selling at about half the prices of (I) and (2) and of good, though not superlative performance.
(5) A modified communication receiver with the following features: (a) at least two signal frequency stages and complete second channel suppression; (b) separate AVC or manual control at will on SF and IF stages and manual on AF as well; (c) separate local oscillator valve and oscillator amplifier and other precautions to ensure freedom from drift; (d) BFO available if required; (e) complete waveband coverage from to to 80 metres ; (g) accurate calibration of dials.
(6) A smaller and simpler longdistance receiver.
(7) A simplified domestic version of the Radiovisiogram selling at a modest price.
(8) A family " all-wave" radiogram.
(9) A family "all-wave" receiver.

Nos. 1 to 5 and No. 7 would, of course, be mains-operated instruments. Though we shall no doubt see an immense increase in the number of homes with mains supplies of electricity, there will be for years a demand for batteryoperated sets. Nos. 6, 8 and 9 might well be made in batteryoperated form, a clockwork device being of course used for the radiogram.
I do not for one moment suggest that every wireless manufacturing firm should turn out the whole range of instruments. On the contrary, I would like to see firms specialising in de luxe, mediumpriced and low-priced sets, just as motor car manufacturers do in the different types and grades of cars.

Space has allowed me to touch only on wireless sets made for use in this country; but the demands of the Empire, too, will be enors mous after the war. We had allowed other countries to capture
far too much of the vast Empire trade in wireless equipment that was developing before the war, largely because our own industry could not or would not cater for its special demands. Now that the opportunity for a completely fresh start is approaching it is earnestly to be hoped that we may recapture the lost Empire trade. It is most important that the necessary effort should be made, for upon our exports will largely depend the future prosperity of this country.

HELPING THE WAR-MAIMED

Wireless, it has been said, is always "on the side of the angels." One can, alas, think of a few exceptions to that rule, but it is a heartening thought to many of us that our technique has, in its short history, done much to save human life and to alleviate human suffering.

There is now a promise that wireless may be able to help victims of the present war in a new way. Experiments have already been made in applying the principles of radiolocation to aid the blind, and now Sir Ian Fraser, the Chairman of St. Dunstan's, is engaged in attempting to apply electronic principlesor at least principles that will probably turn out to be electronic-to providing the means for playing bridge to blinded men who have also lost their arms. In the classified advertisements of this issue Sir Ian invites the co-operation of a technician who has icleas on how this problem might be solved.

SALFORD RF CRACK DETECTOR

Designed for the detection of surface cracks in bar stock materials, this instrument makes use of the tendency of RF eddy currents to concentrate near the surface of a conductor. The photograph shows (left) the RF generator and (right) the measuring head through which the rod under test is passed at speeds up to 1 ft . per sec. When fitted with a meter, the instrument can be calibrated to measure the depth of the crack.

The standard model works from AC mains, but a DC model is also available. The makers are Salford Electrical Instruments, Ltd., Silk Street, Salford, Lancs.

THE super-regenerative principle presents an exceptional number of interesting features. The performance of this type apparatus is especially remarkable in view of the extreme amplification and performance obtained with the minimum of circuit components. Attractive features are the combination of the ultimate limit of sensitivity with ease of tuning due to the low selectivity (which has been of the utmost value for operation upon very high frequencies), and a very marked limiting action upon signals exceeding a certain small minimum value, which results in both an effective AVC action, and discrimination against noise of the ignition interference type. As all these advantages may be obtained from a simple single valve circuit, it is not surprising that the initial development of very high frequencies depended largely upon the use of the super-regenerator, especially as unstable and fre-quency-modulated signals may be received that are too broad for selective receivers of more advanced design. In short, the super-regenerator provides a simple, compact, highly sensitive receiving arrangement, which has been aptly described as a " com-, pactum of radio dynamite," Emergency networks, especially the American A.R.P. amateuroperated networks rely largely upon the super-regenerator.

A brief description of the superregenerator, and some unusual points of interest are presented in this article. In general, the circuits described are for high and very high frequencies, though the principle is still effective upon the lower frequencies, and the celebrated "police helmet" receivers were of the super-regenerative type, using Hivac midget valves. A single-valve receiver of this kind, using a four-inch diameter frame aerial, gives excellent Continental reception on the medium broadcast band, although the requisite low-quench fre-

By O. J. RüSSELL, B.Sc.

quency employed gives considerable distortion.

For our purposes, a simplified explanation of the operation of the super-regenerator will suffice. Basically, the super-regenerator consists of a regenerative receiver, which is rapidly swept in and out of a state of oscillation. Such a condition may be achieved by applying to an oscillating detector, at a considerably lower frequency, modulating oscillation of such amplitude that the detector stage is swung in and out of oscillation. This may be effected by any of the usual recognised modulation methods. This process of starting and stopping the oscillations is appropriately termed " quenching." In the absence of disturbance, the radiofrequency oscillations would stop and start at perfectly regular points during the cycle of modulation, the burst occurring at the modulation frequency. However, the presence of other voltages, as from an external signal, may either advance or retard the exact instant at which oscillation commences. As the oscillations increase rapidly in amplitude in an approximately exponential fashion, until the quenching oscillations cause them to cease, the

It is easy to see that if the external signal is modulated, and hence varies in amplitude, the exact moment of onset of the oscillation of the super-regenerator will vary, which will result in their amplitude varying in sympathy with the modulation of the impressed signal. The anode current will therefore contain a fluctuating component reproducing the original modulation variation and this may be reproduced as an audio signal in the usual way. In actual practice, the sensitivity of the arrangement is sucl that the random fluctuations of electrons in the grid circuit are sufficient to disturb the hypothetical perfect regularity of operation we have postulated in the above simplified explanation, and in the absence of external signals the output of a superregenerative receiver consists of the hiss typical of amplification to the limit of usable sensitivity set by the fact that electricity exists in the discrete particles called electrons.

When a very weak signal is received, the modulation is first heard superimposed upon the hissing noise, but if the signals are increased in strength, the hiss is rapidly suppressed, and only the modulation is heard. Reasonably strong unmodulated signals

Fig. I. Simple VHF receiver with saw-toothed quenching waveform. L_{T} and C_{T}, values to suit appropriate VHF band; C_{A}, o. $01 \mu \mathrm{~F} ; \mathrm{C}_{\mathrm{G}}$, $0.0001 \mu \mathrm{~F} ; \mathrm{R}_{\mathrm{G}}, 100,000 \omega$ to I M $\Omega ; \mathrm{R}_{\mathrm{V}}, 50,000 \omega$, max. ; V_{0}, see text.
oscillations may build up to a bigger value if they commence earlier; or if the commencement of oscillation is delayed they cannot build up to such a high value as their normal undisturbed amplitude.
are recognised by the suppression of the hissing sound when the receiver is tuned to them. The strong hiss output obtained when a super-regenerator is not tuned to a signal has created the impression that these receivers are in-

Super-regeneration-

herently noisier than other types. This is not so, and any type of receiver having the same sensitivity, bandwidth and thermal noise in its first stage, will produce the same amount of noise output. This point, together with a fuller discussion of the superregenerative principle, is dealt with in an article by Scroggie. ${ }^{1}$
little use of quenching frequencies higher than loo kc / s has been made.

The above description has not specified the waveform of the quenching frequency. Normally, of course, a sinusoidal frequency is supplied when a separate quenching oscillator is used. However, it would appear that the use of peaky quenching wave-

Fig. 2. Simple transreceiver based on circuit of Fig. I.

December, 1944

Conversely, at sunspot maximum, the addition of a single stage of AF amplification gives world-wide loudspeaker reception on $30 \mathrm{Mc} / \mathrm{s}$. Optimum operation is obtained by fairly heavy loading of the tuned circuit, especially at the lower frequencies. With an acorn-tube receiver, using an RF stage, it was found necessary

Wireless World

in fact, been constructed using amplifiers tuned to the quench frequency followed by a demodulator.

A method of reception, which in some aspects is an inversion of this principle, was introduced in America under the name of the "superinfragenator." ${ }^{\text {s }}$ This combines the excellent selectivity of

Fig. 4. Block diagram of "superinfragenator."
to wind the super-regenerative detector coil for the ten-metre band with fine wire to increase the damping, before correct operation was obtained. This effect seems to be due to the radio-frequency oscillations being of too great an amplitude to be effectively quenched by the squegger. The symptoms are that the usual hiss is absent or very weak, but increasing to the normal volume when the tuned circuit is loaded as by touching with a damp finger, or by coupling an aerial to it. This effect should be remembered when attempting reception on the lower frequency bands, when, in general, a larger grid leak may be employed in order to lower the quench frequency, and thus to improve the selectivity.

The super-regenerator, being essentially an over-modulated oscillator, can radiate an interfering signal, and a buffer RF amplifier is essential to prevent this. The RF amplifier adds little or nothing to the fundamental sensitivity, but gives a worthwhile improvement in selectivity. The RF stage can be of any normal type, but the arrangement of Fig. 3 is a neat and effective way of adding such a stage.

A further point, resulting from the fact that modulation frequencies are present together with the quench frequency in the anode circuit, is that the quench frequency is actually modulated by the audio signals. An auxiliary receiver tuned to the quench frequency, or a harmonic of it, and lightly coupled to the superregenerator, will reproduce the received signal. Receivers have,
the superhet with the very good AVC and noise-limiting properties of the super-regenerator. Double frequency changing was employed, the first IF frequency being low enough to give excellent selectivity. The second detector converted the signals to a high frequency of about $20 \mathrm{Mc} / \mathrm{s}$, and these were demodulated by a super-regenerative third detector. The block schematic of Fig. 4 illustrates the arrangement employed. A simplified version of this principle, designed to improve
demodulated by a superregenerative second detector. This simplified version, suitable for reception of unstable transmitters, was developed for the American amateur-operated wartime emergency networks. ${ }^{5}$

An interesting consequence of the extreme sensitivity of the super-regenerator has been previously discussed by the writer. ${ }^{6}$ Briefly, if a super-regenerator tuned to a very high frequency, say $50 \mathrm{Mc} / \mathrm{s}$, is operated in the vicinity of a low-powered oscillator, tuned to say $60 \mathrm{Mc} / \mathrm{s}$, then a station operating on the difference frequency of $10 \mathrm{Mc} / \mathrm{s}$ may be received. The local oscillations, and the lower frequency signals are rectified by the receiver, and if it is tuned to either the difference or sum combination of these frequencies, treats them as a normal VHF signal. The high sensitivity of a super-regenerator is normally necessary to disclose this rectification effect.

It is thus quite feasible to construct a receiver using this effect to give an expanded "SingleSpan" effect, enabling continuous coverage over the short-wave spectrum and into the ultra-short regions on the dial without waveband switching. A further use

Fig. 5. Duplex radio telephone circuit. $\mathrm{V}_{1}, \mathrm{VHF}$ oscillator ; V_{2}, quench oscillator.
the selectivity and to reduce the re-radiation of the simple superregenerator when employed on izo Mc/s, uses a frequency changer converting signals to an IF of $20 \mathrm{Mc} / \mathrm{s}$, which, after a single stage of amplification, is
would be to enable a master warning station on an entirely different frequency to interrupt a receiver tuned to a high-frequency programme for emergency purposes, while not interfering with reception of the programme sta-

Super-regeneration -
dion upon ordinary receivers. Four years after the writer's letter on this effect, an independent announcement of this phenomenon was made in Russia by N. V. Osipov, ${ }^{7}$ followed by a further article ${ }^{8}$ giving a mathematical treatment of the effect. The conclusions reached by Osipov are similar to those given above, although he adds that the sensitivity is superior to that of a normab reacting detector circuit.

A further interesting development of the super-regenerator is the duplex radiotelephone system evolved by W. B. Lewis and C. J. Miner. ${ }^{9}$ This two-valve circuit, suitable for connection to normal telephone line systems, provides simultaneous two way speech transmission and reception, or even multi-way or "conference" communication. A series tuned oscillator circuit (originally due to Gouton and Touly) operates on about $100 \mathrm{Mc} / \mathrm{s}$, and a second valve is used as a sinusoidal oscillater for injecting a quenching ferequincy into the grid circuit of the VHF oscillator. The VHF oscillation is radiated, modulated by the quench oscillator. A similar receiver nearby will cause a beat note between their separate quench frequencies, if they are different. The quench oscillators may be tuned to zero beat with each other, when they will lock in step. If the quench oscillator of one receiver is modulated by an audio signal, this is detected by the other receiver, and simultanecus two-way transmission and reception is possible. Over apprecable distances the locking-in of the two oscillators is complicated by the slight time delay in transmission over a distance, and a suitable quenching frequency is chosen so that the quenching oscillation is in the correct phase at both ends of the transmission path for stable locking. This is ensured by making the quench oscillators tunable to select a suitable ferequincy. Using small battery valves, the designers maintained communication on $100 \mathrm{Mc} / \mathrm{s}$ over non-optical paths of up to thirty miles in mountainous country. A simplified version of their circuit is shown in Fig. 5.

Other applications may be briefly mentioned. The automatic limiting action of the superregenerator has been utilised as
the basis of a wide-range logarithmic voltmeter, indicating from 10 to 10,000 microvolts. This is mentioned in the article by Scroggie. ${ }^{1}$

A suggested use of superregeneration is for automatic VHF relaying. Signals are received from a dipole connected to the grid circuit, and are re-radiated in amplified form by a dipole coupled to the anode circuit. As a super-regenerator is already in a state of oscillation, it is suggested that no screening of the output and input dipoles is necessary, and evert that the space-coupling between the dipoles could provide the necessary feed-back to maintain oscillation.

Finally, the squeggering type of super-regenerative receiver may be used as a time-base. A good saw-toothed output with a rapid flyback can be readily obtained, and has found considerable application in television receivers, where in general a vapour discharge triode charging circuit may be replaced by a hard triode squeggering oscillator. ${ }^{10,11}$

REFERENCES

${ }^{1}$ M. G. Scroggie, "The Super-regenerative Receiver," Wireless Engineer, November, 1936
${ }^{2}$ O. J. Russell, " Simplified Super-regeneratimon," Television and Short-Wave World, May, 1937.
${ }^{3}$ E. Hughes, " Squegging Oscillators," Wire less World, February, 1943.

* Ross Hull, "A New Receiving System for the Ultra High Frequencies," Q.S.T., November 1935, and December, 1935.
${ }^{5}$ J. W. Brannin, "An Experimental 112-Mcs Receiver,' Q.S.T., December, 1941.
- O. J. Russell, Correspondence Columns, Wireless World, July 31, 1936.
*N. V. Osipov, "On Certain Combined Resonance Phenomena in Short-Wave Receivers," Journal of Technical Physics, No. 6, Vol. 9,1939 (in Russian).
${ }^{8}$ N. V. Osipov, "On Certain Combined Resonance Phenomena in Short-Wave Receivers," Journal of Technical Physics, No. 10, Vol. 10, 1940 (in Russian).
${ }^{5}$ W. B. Lewis and C. J. Miner, "A Portable Duplex Radio-Telephone," Wireless Engineer. September, 1936.
${ }^{10}$ D. J. Reid, "A New Time Base: Hard Valve Circuit with Linear Characteristics," Wireless World, April 14, 1938.
${ }^{11}$ O. S. Puckle, "Time Bases," Published by Chapman and Hall.

PACKING RADIO EQUIPMENT

 T HE importance of producing wireless apparatus and components capable of withstanding the difficult climatic conditions prevailing in the Far Eastern and Pacific theatres of war has long been stressed. It is now being realised that the manufacturers' respon sibility does not end there; the packing of apparatus and the observance of special precautions for its protection in transit is also of vitalimportance. Packing and protective methods that are entirely satisfactory for the temperate zone are useless for the Far East.

To help manufacturers of war equipment in solving packing problems, the Anglo-American Packaging Committee of the Ministry of Production recently opened an exhibition to show some of the methods that are recommended. These methods range from the elaborate protection of a combined transmitter and receiver, in which the containing case is packed within a moisture and vapour-proof outer covering containing a dehydrant, to the packing of a pair of 'phones which are contained in a carton padded with bituminised crepe cellalose. The carton is wrapped in greaseproof paper, the whole being dipped in molten wax ; a dehydrant is also used in this case. Even a simple article like insulating tape is sealed into a tin of the key opening type.

It is believed that this exhibition will be of interest not only to manafacturers of war equipment but also to firms concerned with export trade. The exhibition, which will remain open for some considerable time, is at the Central Ordnance - Depot, Feltham, Middlesex. Manafacturers may obtain invitations to see it by writing to the Commondank of the Depot.

THE WIRELESS INDUSTRY

WE extend our congratulations to Wright and Weaire, who recently celebrated the twenty-fifth anniversary of the foundation of the firm. Is there any other manufacturer of wireless components and accessories with an equally long record of activity?

The title of the business of N . Partridge (founded by the late Dr . Partridge, whose death by enemy action we recently announced) has been changed to Partridge Transformers, Ltd. The address is unchanged- $76-78$, Petty France, London, S.W.r.
> "Electrons Telesis" is the title of a very attractively produced 64-page booklet explaining the fundamentals of electronics in simple language. Free copies are obtainable from the makers of Eimac valves; Eitel McCullough. Inc., 893, San Mateo Avenue, San Bruno, California, U.S.A.

We are informed that Ersin activated flux solder has been submitted to the A.I.D. for test by the manufacturers, Multicore Solders, Ltd., and has been granted approval under the conditions of test laid down in the Ministry of Aircraft Production's Specification D.T.D. 599 .

An illustrated leaflet describing the manufacture of instrument cases has been prepared by Alfred Imhof, Ltd., 152-116, New Oxford Street. London, V.C.I. Copies will be sent to those interested on receipt of 1 d . to cover postage.

ARMY SETS

Details of Some Radio Gear

C^{0} far very few details of the sets which have formed the main link in the Army's communication system have been published. The ban is now lifted, and we reproduce on this and the following page photographs and some details of a representative selection of the sets. Space does not permit the inclusion of more than brief details, and it is hoped to give fuller descriptions of one or two of the more outstanding receivers in future issues.

Two good examples of the type of set used by infantrymen in the forward areas are the No. 38, for use between a platoon and its company headquarters, and the No. I8, used for maintaining a link between company and battalion headquarters.

Both of these transceivers (sets in which some of the components are common to both transmitter and receiver) are designed for use by those whose technical training is very limited. Extreme simplicity of operation is, therefore, essential.

Four of the five valves in the 38 set are used in the superhet receiver-a metal rectifier provides detection and AVC-and three are operative for transmission. Frequency coverage is from 7.3-8.9

Crystal control of the transmitter frequencies (I.75- 2.9 Mc / s) is provided in the No. 68 P transmitter-receiver (above).

Remote control up to half a mile is provided in the 13valve transceiver No. 22 (Left) which employs three pentodes in parallel in the output stage.

Mc/s-the IF being $285 \mathrm{kc} / \mathrm{s}$. This pack set, which is designed for short-range RT working, is extremely light, weighing only $6 \frac{1}{4} \mathrm{lb}$.

The No. I8 set is a much heavier transceiver, weighing 32 lb. complete, and is not intended to be operated by the carrier when on the move. The fre-

Sets are dropped by parachute, with valves in situ, in this container.

Army Sets-
quency coverage of this set is from 6-9 Mc/s.

Almost all communications forward of brigade are by radio telephony, while in the rear of brigade headquarters telegraphy is more widely used because with skilled operators a large volume of traffic can be handled. All the sets, therefore, used for brigade and divisional communications are operated by men of Royal Signals, whose training permits the use of complex equipment.
One of the most versatile sets is the No. I9, which has been one of the main links in the Army's communication system in

Interior of a " thinskinned" wireless 1orry (fight) showing the No. 12 highpower (250 watts) transmitter above the bench. The units in the centre are, from top to bottom, the aerial coupling unit, RF amplifier, modulator and power supply unit.

The Riog, 8 -valve general-purpose superhet receiver (below) has a builtin loudspeaker.

therefore requiring an efficient means of communication over considerable distances. The set is crystal controlled on six frequencies between 2 and $12 \mathrm{Mc} / \mathrm{s}$ and has a power of 20 watts. A lightweight 80 -watt charging unit is dropped with the set in airborne operations. The 76 set was used in the airborne landings in Holland, when communication was maintained with this country.
the field. It comprises three sets in one-a transmitter-receiver, providing RT, MCW and CW communication between troop and base, a UHF transceiver for linking vehicles in a unit and an intercommunication amplifier for the crew. The main set, which employs 9 valves, six of which are used in the receiver, and six for transmission; covers the frequencies $2 . \mathrm{I}-8 \mathrm{Mc} / \mathrm{s}$ in two ranges. The four-valve UHF transceiver works in the $229-24 \mathrm{I} \mathrm{Mc} / \mathrm{s}$ band.
In addition to being used in armoured vehicles and tanks, the No. 22 set is adaptable for use as a three-man pack, as a mule pack, on a handcart, and for dropping by parachute.

Some sets are developed for purposes outside the normal chain of communications. ${ }^{\circ}$ Such is the No. 76 set originally designed for Commando formations likely to be working in isolated groups and

The crystal-controlled 76 transmitter provides for CW operation only.

Angles on BRIMAR PRESTIcie

People who know make Brimar Valves their first choice. They are unequalled for reliability and performance. Although still in short supply you may be able to get the valve you require.

BRIMAR
 dis valves

 Hero

 -
 one it of our like to do its stupe
carmelo pet sales

 they operate undo, make se, combined

PARMEKOLTD., Makers of Transformers

METERS

$2 \frac{1}{2}$ " Flush meters, high-grade movements, calibrated VOLTS, milliamps and ohms. Complete with kit of 5 resistors and wire wound ohms adjuster to make up multi-range instrument 0/5000 OHMS, 0/3, 0/30, 0/60 $0 / 150,0 / 300$ VOLTS and $0 / 6 \mathrm{~mA}$............... Price \in
$0 / 1$ Mitliammeters, calibrated scale 0 to 1 mA and 0 to 50,000 ohms. $£ 2$ ifs. 6 d. (to callers). By post $£ 2$ Is 6

14 Soho Street, Oxford Street, London, W.I
Telephone: Gerrard 2089
We are available 9 arm. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS -10 am. to 4 p.m. (Saturdays 10 atm, to 12 noon.)

RANDOM RADIATIONS
 By "DIALLIST"

A Good Sixpenn'orth

THE sixpenny trays of bookshops always attract me, for there is no saying what they may yield. I remember as a hard-up young man putting down my sixpence at a vil lage fair for a first edition which I afterwarels sold for as many pounds. Miracles of this kind are not frequent, but I have had a pretty useful number of real bargains. The other day I picked up a brand-new copy of "Edison," by George S . Boyan, an accurate and well-written life of the great man which has given me a lot of spare-time pleasure What a strange personality he was! Neither a good physicist nor a competent mathematician, he was full of ideas, and he possessed the happy knack of seeing how the apparently impossible could be accomplished Nothing deterred him once he had made up his mind to tackle a line of invention. In 1879 he decided to attack the problem of what was then known as "subdividing the electric light,' or, in other words, of producing small lamps that could be run in parallel to take the place of an arc lamp. Amongst others, Sir William Preece (later a friend and admirer) stated categorically that " the subdivision of the light was an obsolete ignis fatuus." Edison never doubted that he would succeed in his quest. After many thousands of tests and experiments he produced his glow lămp, and, incidentally, discovered the "Edison effect" which years later was to be the basic principle of all wireless valves.

Wiring Noises

SOME friends having complained that wireless reception, particularly on the short waves, was very noisy in their home, I took a hasty look at the wiring of some of the lighting and power circuits. What I saw then interested me so much that I said I'd spend a day on the job and do it thoroughly next time I was home on leave. That day was an eye-opener. I'm not surprised that their reception was noisy; in fact, it must be due to some special intervention of Providence that they haven't been electrocuted or their homes burned down before this. The wiring appeared to have been done by complete nit-wits, who had not only treated the I.E.E. rules with a fine, free disregard, but had also gone out of their way to evolve
examples of crazy folly. There were as many switches in the neutral as in the live wire; frequently the "black" was the live, and the "red" the neutral wire; leadcovered cables had been largely used, without proper bonding or earthing; many joints and "tees" were made without the use of junction boxes. In one or two cases "Hlex" had been used for quite long runs-one such length of "flex" lay under the floor-boards of a corridor, sharing grooves in the joists with a gas main!

Don't Take It For Cranted

This is the worst instance of bad and dangerous wiring that I've come across, but I suspect that there is a great deal of it about, especially in bouses built in the 1920s, when far too much of this kind of work was done by what was euphemistically called semi-skilled labour. Some of the older houses, too, are not now in very good order as regards their power and lighting circuits. When I bought my present abode (built in 1909) I went carefully over the wiring and was so horrified by its condition that I gradually re-did the whole of it on modern lines and with modern materials. What the state of the circuits must be in houses that were wired 50 years ago and haven't since been re-done I can't think. I do, though, remember one friend, who had bought an old house, saying to me quite casually :
' Queer thing about my house; the electricity meter keeps on turning even when everything's switched off"! Definitely, one's electric wiring should not be taken for granted. I've known many cases of radio noisiness that were directly traceable to defects in the household circuits. And not a few of these defects were such as to give rise to really dangerous conditions.

A π Query

O^{s}NE correspondent, after expressing admiration of the ways of remembering π to umpteen places of decimals which readers have produced, asks what is the use of them, anyway? Does anyone employ such a string of figures as 3.14159265358979 in any kind of calculations? Frankly, I don't know. I can't think who could do so or for what purpose. Possibly astronomers (this is suggested by the fact that Sir James Jeans is
responsible for one of these aids to memory) need very accurate values for π in some of their more elaborate calculations. But one would imagine that even they could hardly need to go to 30 or more decimal places. Eleven places of decimals would give you the circumference of a sphere whose diameter equalled that of the earth correct to a tenthousandth of an inch. There are, I believe, not many engineering jobs in which 3.1416 isn't a sufficient good approximation and for most electrical and radio calculations $22 / 7$ is near enough. One marvels at the misplaced industry of the π-chasers who succeeded in slogging out values running to hundreds of places.

Sad

SPEAKING at an official function the other day, one of the big men in the British radio industry gave a foretaste of future poligy which makes sad reading to those of us who had hoped that when peace returned the wireless and television receivers produced in this country would hold their own against any in the world. Here are some of the rather tragic things that were said. Television receivers, made at first to minimum requirements (able, that is, to deal with the sound and vision transmissions radiated by television stations, but not designed for sound reproduction on other wavelengths) were likely to sell at about $£ 30$ and within four years the price would drop to little more than half this. As for "broadcast" receiversthose, that is, which don't cope with television-his view was that the industry should aim at meeting the maximum demand, which was for a set priced at 12 guineas. In other words, the opportunity of showing what wonderful reproduction can be obtained from the highfidelity sound transmissions accompanying television is to be flung away; you couldn't do it in a $£ 30$ set, and certainly, even in four years' time, not in one costing $\not \subset 17$.

Production of simple and cheap sound broadcast sets may be-indeed, probably will be-a necessity for the immediate post-war period, but I hope that the "austerity" era will not endure for a day longer than our national needs may demand

Price No Obstacle

Now why try to keep the price of television receivers down to $£ 30$? Why make the halving of that price your main aim as the years go by? Surely our radio manufacturers ought to know by this time that it was not the cost of receiving equipment which prevented the public
from installing television in its homes in pre-war days. Some manufacturers had that idea in 1937, when sales were microscopic. Very well, they would show 'em! They would give the public the cheap television receivers for which it had obviously (their "obviously," not mine) been waiting. And they did. That is, they produced the cheap apparatus right enough, in 1938. There were plenty of television receivers then at round about the $£ 30$ mark and you could buy television " adaptors" for use with broadcast receivers for $\not £^{22}$ ios. or a bit less. And did they sell? They didn't. The man in the street showed unmistakably that price was not the obstacle. He's quite prepared to accept television as a luxury and if one thing is certain it is that if he has a television receiver at all he wants a good one. And then receiving sets. It's the
manufacturers, not the public, who have fixed the twelve-guinea set as the standard. Had the public been taught, as it should have been and still could be, that the twelveguinea receiver was only for those who couldn't afford anything better, the story would have been very different. As it was, the manufacturers ranmed into the head of the man in the street the idea that, unless he wanted a lot of quite unnecessary fal-lals, twelve guineas was all that need be paid for " the world's best wireless set," "radio's finest performer," or "the last word in receiving set technique." Before the war this specialisation in mediocrity cost the wireless industry of this country the loss of far too large a part of the Empire markets. It will be tragic if after the war, when we shall need our export trade as we have never needed it before, the same stupid blunder is repeated.

SCHOOL OF SIGNALS DEVELOPMENTS Technical and Tactical Training

WIRELESS WORLD recently had the opportunity of revisiting the School of Signals in the North of England, the functions and organisation of which we described in our issue of December, 1942.

As would be expected, considerable progress has been made in the intervening two years, in both the methods of training and the instruction given. During the past year approximately 8,000 students passed through the school, the primary function of which is to train signal instructors for all arms of the Service, other than the Royal Armoured Corps, and provide higher technical training for officers and N.C.O.s of Royal Signals. It should be pointed out it does not train recruits.

The school is organised as a Headquarters, including a Publications Section for the production of training manuals, and the following four Wings:-
(I) The Royal Signals Wing, which provides a high standard of technical training in wireless and line equipment and line construction as well as undertaking the initial Army tests of new signals equipment;
(2) The Regimental Wing, which trains officers and N.C.O.s of R.A., R.E., Infantry and R.E.M.E. as instructors and assistant instructors in signalling; (3) The Tactics Wing, which
deals mainly with the tactical aspect of communications, and runs refresher courses for officers.
(4) The Administrative Wing.

A feature of the training is the use of practical demonstrations as opposed to lecturing. During a tour of the demonstration rooms

Apparatus for demonstrating the radiation from a dipole aerial.
various visual aids to facilitate training were to be seen. These have been designed by the staff and in many instances constructed by the students.

One of the demonstration sets illustrates the exponential curve obtained when a condenser is charged or discharged through a resistance ; as well as showing that damped oscillations occur if there is inductance in the circuit. Provision is made for the discharge of the condenser by a neon lamp or a valve connected across it.

To demonstrate Fourier's analysis five oscillators working at frequencies of $1,2,3,4$ and $5 \mathrm{kc} / \mathrm{s}$ are used. The relative phase and magnitude of the output of each of these may be varied, the phase variations covering at least one cycle. The outputs are connected in series to a cathode-ray tube which illustrates the result of connbining a number of sinusoidal wave forms. Particular wave forms may thus be built up. In order to demonstrate aurally that a gradual change in the relative phase of two frequencies cannot be detected by ear, a loudspeaker may be connected to the output.

The importance to the Signals student of a sound knowledge of wave propagation and aerial characteristics cannot be over-estiinated. It is not surprising, therefore, to find that one of the most elaborate demonstrations is that dealing with aerials. By means of flash lamp bulbs in series with miniature aerials which are excited by an oscillator working at a frequency of $150 \mathrm{Mc} / \mathrm{s}$, horizontal and vertical polar diagrams can be visually demonstrated. The fundamental facts of radiation from dipoles-with and without reflectors and directors, vertical rod aerials, three-quarterwave end-fed aerials and transmission lines can all be demonstrated.

One of the major Signals problems in modern warfare is the accommodation of a large number of sets using different frequencies within the allotted band without mutual interference. In the battle of El Alamein 6,000 sets were employed! It is obvious, therefore, that one cannot divorce tactical from technical training and the task of the Signals School can be summed up as that of teaching the application of signals technique to tactical problems.

WAR REPORTING

Some of the B.B.C.'s Mobile Recording Gear

BY providing regular eye-witness accounts from the widely dispersed war fronts the B.B.C. War Reporting Unit has done a good job of work. For such a diversity of tasks as, for example, the reco-ding of sound pictures of a raid on Germany anc the landing of paratroops in Normandy, a variety of equipment is used by the war correspondents Eor recording their reports and transmitting them to this country. The photographs on this fage show two of the many types of recording outfits employed. In addition to these outfits midget disc recorders weighing only $35 \mathrm{lb} .$, which were described in our May, 1944, issue, and the saloon car recording equipmeit, which was in use before the war, are also employed. On the whole the B.B.C. relies on gear which is designed, and not infrequently buil:, by its own Engineering Division.

In the largest type of recording van employed by the War Reporting Unit two disc recording channels are fitted. The mains-operated channel is illustrated above and battery operated on the right.

The roof of the recording van provides an elevated observation

For use in the fie. d_{2} battery-operated reccrcing equiprent is mountec ir a Jeep traile:. The nicrophone mizer can be seer. abcore the amplifier in the photograpj below. The power supply unit is obscu-ed by the ooerator.

STANDARDISED COMPONENTS

1-Properties of Resistors

By THOMAS RODDAM

The significance of wartime measures for standardising the properties of radio components was discussed in last month's issue, and it was pointed out that this standardisation may profoundly affect the industry's post-war work. A more detailed examination of the characteristics of resistors as standardised is made in the present article

IN an introductory article in last month's Wireless World the new specifications now being published in the $\mathrm{BS} / \mathrm{RC}$ series' were explained. We now continue with our examination of some details of the specifications. It will be assumed that the specifications are drawn up to provide the best possible components which can be produced in adequate quantities by modern methods. The figures given are thus assumed to represent the behaviour of perhaps the worst ro per cent. of the production, and in designing equipment we must remember that we cannot normally demand any better performance than that described in the specifications. In an ideal engineering world, indeed, the component maker would be careful not to make the components any better, if to do so would cost any more.

With this in mind, let us consider the properties defined for resistors. In Fig. I is shown diagrammatically the way in which resistors are classified. Our principal interest will, of course, be the carbon resistor, which is easily the most common single kind of component in use. Carbon resistors are classified in two ways: by method of manufacture and by performance. The reason for this classification is somewhat obscure, because as far as the writer is aware all Grade 1 resistors are carbon film types, and all carbon film resistors are intended to be Grade 1, and are too large for Grade 2 anyway. However, in the documents two grades, I (high stability) and 2 (medium stability) are introduced. Later we shall see what this means. Three methods of construction are described:

[^4]carbon film, carbon composition and composition film. The last of these is probably the oldest type of mass-produced cheap resistor. In primitive language, it consists of a glass tube which has been black-leaded and then baked until the carbon composition forms a hard film on the tube. This resistance element is enclosed in a ceramic or bakelite covering and leads brought out. This type has long met much competition from the carbon composition resistor. A mix of carbon black, resin and other materials is moulded under pressure into a rod, which is then ground to a cylindrical "pin." The ends are coated with copper,
butter component, relatively new in this country. A ceramic rod (or glass rod or tube) is exposed to hydrocarbon vapours in a heated chamber. A thin film of more or less pure carbon is deposited on the rod. In preparing resistors of high values a spiral is cut in the carbon film to provide a long narrow track of the relatively low resistivity material. The resulting resistor is very stable in value. It is normally protected by a tube or lacquer film from moisture and mechanical damage. These resistors are usually larger in size than composition resistors of the same wattage dissipation.

Fig. 1. Standardised classification of resistors.

Yet another division is made among the fixed carbon resistors. It is between insulated and non-
around which (in the larger sizes) wires are wrapped, soldered, and the resistor is painted. The smaller sizes are often enclosed in ceramic cases, and recently very small types in bakelite coverings have appeared. Unprotected types down to very tiny sizes are made. A full description of the manufacturing process appears in the April, r943, number of the Post Offie Electrical Engineers' Journal. The carbon film resistor is, as a bread-and-
insulated types. Insulated types are those resistors which are encased in ceramic or bakelite and can therefore be allowed to touch metal panels and the like without danger. Resistors which are covered only with paint should not be used in this way, even if a test with an ohmmeter suggests that the paint is an insulator. This distinction is even more important with wire-wound resistors, as the high temperatures at which these can be run result in a very con-

December, 1944
siderable lowering of the insulation resistance.

In Fig. 2 is shown the permitted changes in value of a Grade 2 resistor. As supplied, it has a

Wireless World
guide a statement is made that the permanent drifts are usually towards increased values of resistance while the cyclic changes are towards reduced resistance. If

Fig. 2. Grade 2 carbon resistors: specified permissible deviations from nominal rated values and actual initial values.
normal tolerance of 20 per cent.: for this we are prepared. But this is not all. An ageing effect may produce a drift of up to $2 \frac{1}{2}$ per cent. in six months, and this drift is most rapid when the resistor is new. Soldering the resistor into position may also produce $2 \frac{1}{2}$ per cent. change, and under normal load conditions, which are quite generous, a further 3 per cent. drift is possible. These changes are apparently non-reversible. To them must be added the effect of temperature, which may cause a change of up to 6 per cent. Another effect is a non-linearity commonly called voltage coefficient: the value of the resistance is not independent of the applied voltage and resulting current, but changes by an ainount dependent on the voltage applied. It is found that changes of up to $7 \frac{1}{2}$ per cent. may be produced by this effect. If we examine the figures closely we see that a resistor in position in a set may, when the set has once been operated, have a value differing by 9 per cent. from its initial value, and consequently by up to 29 per cent. from its nominal value. Further, when the set is working an additional change of up to $13 \frac{1}{2}$ per cent. is possible. Tropical conditions may introduce a shift of 3 per cent. In the fixed resistor
this is so, a self-balancing action will tend to prevent such large changes as we have envisaged. As most circuits would go on strike if such enormous changes as the specification permits actually took place, we can assume that the picture is perhaps a little gloomy.

If we now look at Fig. 3, which
cent. Such resistors are therefore very constant in value, so long as they are not run at any appreci able loading. The chief source of change is still voltage coefficient, with temperature coefficient coming second, and the two together amounting to $7 \frac{1}{2}$ per cent. Thus the stability of a resistor is very closely dependent on its circuit use. If it is run at its full rating it is likely to differ appreciably from its tested value. As the change due to voltage coefficient takes place immediately, circuit drifts with high-stability resistors will be comparatively small, as only the temperature coefficient of 0.04 per degree Centigrade has any "slow drift" effect.

Before we leave carbon resistors, two points are of interest. The noise voltage appearing across the terminals of a resistor when a current flows through it is considetably greater than the normal Johnson noises. The formula given for this carbon noise is $\quad 2+\log _{10} \frac{R}{1,000}$ microvolts per volt applied. This is plotted in Fig. 4. In addition, the noise level given by Christensen and Pearson ${ }^{2}$ is plotted with constants chosen to make curves touch at ro,000 ohms. It will be seen that there is not a great deal of difference, and it is difficult to see why a new expression having no pos-

Fig 3. Specified performance of Grade I carbon resistors ; nature of the various tests as in Fig I.
represents the specified behaviour of a Grade I resistor, we see that the normal changes associated with soldering, robustness, loading and life amount only to 2 per
sible theoretical justification has been used. The I.S.C.Tech.C. formula offers us a silent resistor of roo ohms value! Fortunately $\stackrel{\square}{\text { Bell System Technical Journal, April, } 1936 .}$

Standardised Components-

this is of little importance, for most uses of carbon resistors do not involve current flow at points where the noise level is of importance.
where the product $f \mathrm{R}$ (f in kc / s, R in ohms) exceeds about 10^{6} unless the inductance of the resistor can be used as a circuit element.

This survey of the specifications to which the bulk production of

Fig. 4. Curves for noise level of resistors.

The effect of high frequencies is also of interest. A note on this appears in the guide. Sometimes known as the Boella effect, the apparent fall in resistance due to distributed capacitance has been thoroughly explored. The capacitance being distributed, it cannot be tuned out. The actual behaviour of a resistor can be predicted from Howe's curve, ${ }^{3}$ which is reproduced in Fig. 5.

Wire-wound Resistors

So much for carbon resistors. There is no need to say much here about wire-wound resistors, as these are remarkably wellbehaved and straightforward components. One point of some interest which stands out in the specification, however, is the effect of the temperature coefficient. A temperature rise of 180 deg . C. with a coefficient of 0.025 per cent. per degree involves a change of $4 \frac{1}{2}$ per cent. Thus a wire-wound resistor will probably never be more than about 5 per cent. different from its initial value. Indeed, the only disadvantages of wire-wound resistors appear to be their inductance and their cost. For anything except audio-frequency work, the inductance is likely to be important and, in general, wire-wound resistors cannot be used at frequencies

[^5]fixed resistors will be made is not complete. It is felt that by keeping to the broad outlines light has been shed on certain rather dark passages in these documents. But the writer would urge that the I.S.C.Tech.C. should itself take over the work of explaining the

December, 1944
implications of their specifications. By the publication of guides of adequate length and full authority the life of the equipment designer could be greatly eased. For example, the guide on fixed resistors does not draw attention to the wide variations in value which can take place with carbon resistors, yet this is of paramount importance. Further, those responsible for the specifications may know that the extreme range of 27 per cent. which the specitications predict is, in fact, never reached and that perhaps to per cent. is a safer figure. These things must be known; they deserve full publicity.

Variable Resistors

We shall not devote much space to variable resistors. These, as will be seen from Fig. 1 , are split up into composition track and wire wound, and each type is then divided into two grades. The only difference between them is apparently in insulation, and it appears unfortunate that a Grade i composition variable resistor should have high insulation resistance, when it is Grade 2 among the wire-wound variable resistors which has the higher insulation resistance. The stability of Grade I composition variable resistors is

Fig. 5. Effect of high frequencies.

December, 1944
not high; no higher, in fact, than that of Grade 2 fixed resistors. Thus the term "Grade" loses its

sistors resemble closely those of the fixed resistor in scale. Shifts of 5 per cent. for composition tracks and I per cent. for wire tracks are normal, but the permitted change of 50 per cent. under load for composition tracks is rather shocking. It is not surprising that no overload test is incorporated. A second rating would have been a great helpone which would not have produced a change exceeding perhaps 10 per cent.

To conclude, a word on valuesand colour coding. The values of resistors h a ve been standardisd on the preferred number scale, $10,15,22$, 33, 47, 68, etc. This scale enables any value to be quoted as a standard value ± 20 per cent. In pro-
meaning. It is this kind of thing which causes intense confusion in the laboratory and drawing office. The properties of the variable re-

Courlosy Erie Resistor, Ltd.

JAPANESE AIRBORNE RADIO

THE Model 99, Type 3 receiver, used in Japanese reconnais-sance-bomber aircraft employs four similar valves of the triode-pentode type, identical with the American 6P7. The circuit is arranged as follows:-

R1F amplifier		pentode section of valve 1			
Mixer	\cdots	triode	"	"	2
Oscillator	\cdots	pentoile	"	"	2
1st LF amplifier	\ldots	,,	,	,*	,
3nd IF		"	"	"	
2nd detector and oscillator ...		triode	"	',	
Ist Al: amplifier	...	"	"	"	
2nd AL amplifier	\cdots	"		",	

The receiver has an intermediate frequency of $450 \mathrm{kc} / \mathrm{s}$ and a tuning range of 1.5 to $6.7 \mathrm{Mc} / \mathrm{s}$ in two bands with interchangeable coils. There is provision for reception on one crystal-controlled spot frequency. No AVC is incorporated. A folding handle is provided to speed up movement from one part of the dial to another, since the fixed reduction ratio of the slow motion tuning drive is rit : I .

The design makes no contribution to our knowledge of reception technique, but is an advance on Japantese-built receivers of two or three years ago.

INTERFERENCE rвом RADIO HEATERS Suggestions for Control

RADIO frequency heating is rapidly establishing itself in many industries. Equipment for thousands of kilowatts is already projected, in units ranging from 100 watts to 100 kW . and more; it requires little imagination to visualise single factories with an installed RF output approaching the combined carrier power of several main broadcast stations.

Until September, 1939 , no control of radiation from industrial and medical equipment existed in Great Britain. Offenders were dealt with by persuasion and technical assistance. That situation still holds good for many forms of interference, but the Control of Apparatus orders of 1940 and 1942, under the Defence Regulations of 1939, did give the Post Office power to prohibit the manufacture; sale, purchase or use of any equipment which radiates at radio frequency to a degree considered dangerous to public safety and Service requirements.

This is a war measure; there is no guarantee of its survival when peace returns, and in fact there are good reasons for the with. drawal of some of its provisions; for example, the restriction on purchase of ordinary broadcast receiving valves above 10 watts anode dissipation. But on the question of radiation there is a strong case for not only continuing control, but extending it to include the highly annoying damperd wave trains produced by all kinds of electrical machinery, sparking plugs and other essentials of our civilisation.

Some form of control for industrial radio heating is therefore indicated, at the earliest possible date. Later, the entire field of radio will be reviewed by the technical committee of the International Telecommunications Convention; existing frequency allocations will be revised and a new world plan prepared in which radio heating must inevitably be given a place. Until then no long-term decisions can be taken.

Fortunately most of the pioneers in the new sphere are themselves

By F. YOULE
(Rediffusion, Ltd.)

communication engineers with a lively sense of their responsibilities. They are, however, up against some stiff technical problems, and in spite of all reasonable care, cannot absolutely control the conditions under which their products may be used. It is evident that without some unifying code, attempts to meet these conditions will result in many individual standards, arlding greatly to the task of subsequent rationalisation.

A comparatively simple case of effective anti-interference screening : the "work" chamber of a Rediffusion $\frac{1}{4} \mathrm{~kW}$ heater, mounted close to the generator and fully screened.
Let us consider some of the more obvious hurdles.

First, the materials to be heated range from an ounce or less of moulding powder and similar substances to several hundred pounds of darge plywood board; from strips of P.V.C. less than 0.5 mm . thick to rubber mouldings several inches deep; from the tips of small lathe tools to steel billets weighing several pounds. These cannot all be dealt with on a limited frequency band. They call for a number of channels ranging
from under $500,000 \mathrm{c} / \mathrm{s}$ to over $100 \mathrm{Mc} / \mathrm{s}$, which will be difficult to find in our congested ether.

Secondly, whereas transmitters feed into circuits whose characteristics are known and stable, industrial RF generators supply loads which usually do anything but remain constant over a heating cycle. Changes of 1 to 5 in capacity, power factor and dielectric constant are relatively common; a stack of resin-impregnated paper heated under pressure to form, say, paxolin sheet, may exhibit a capacity change of x to 20 during the process. The properties of steel alter so greatly at critical temperatures that a fixed frequency oscillator will drop from maximum to one-tenth full loading in a couple of seconds. To meet such conditions one must either tie the frequency to the load constants or provide means of maintaining the latter within reasonably narrow limits.

Thirdly, RF heating will be used extensively with existing machines, often of very large size. These cannot be moved, replaced, or screened effectively except at prohibitive cost. A really big press, for instance; will occupy as much volume as a dwelling house, towering 300 feet above the floor, extending perhaps so feet below, with platens $u p$ to $16 \times 8 \mathrm{ft}$. tlanked by mechanical loaders extending 20 feet on either side. Fortunately this type of plant is usually in a steel framed building, bas a high capacity to earth, and by virtue of its shape and mate-rial-chiefly steel-is an inefficient radiator. But it will be linked to the biggest RF generators, and may therefore have to be permitted limited radiation on an approved channel.

Although evidence is being accumulated by means of field strength measurements for manly installations, we are still far from the detailed knowledge essential to balanced decisions on what must be done. Nevertheless, action is needed, and the following code is put forward in the hope that its reasonableness will encourage general acceptance without coer-
cion, until such a time as rules based on experience can be framed.

First, it is suggested that equipments built in such a manner that the total external field produced by the RF unit, its load and all interconnections, including mains leads, is below a specified level should be free from frequency control and additional screening re= quirements. Two provisions are added:-
I. That channels allocated to public services such as broadcasting and television be avoided, as in most industrial areas factories and large num bers of dwelling houses are so closely intermingled that the aggregate field strength from a number of RF units may easily cause appreciable interference.
2. That the permitted radiation level should vary according to local conditions, and not be a single arbitrary figure at a fixed distance, for example, a factory situated away from residential areas, or placed in large grounds, may well cause no nuisance outside its walls with higher intrinsic radiation than one less favourably placed. Or a plant near a broadcast station might quite safely work on a frequency adjacent to that of the nearby station, but would create havoc at a frequency close to that of a popular distant station.
Second, if the radiation cannot be kept below the prescribed level, the installation must either be enclosed by adequate external screening or confined to a permitted frequency. The latter presupposes a closely controlled
master oscillator and means for adjusting the load circuit to it.

Any attempt to forecast the ultimate frequency allocations for such cases is obviously highly dangerous to one's prophetic reputation. But a study of the International Radiocommunications Regulations (Cairo, 1938) combined with some knowledge of the industrial heating field already explored, suggests that a useful start could be made with eight selections in the following bands:-

$160-140 \mathrm{kc} / \mathrm{s}$	$16-17.5 \mathrm{Mc} / \mathrm{s}$
$515-540 \mathrm{kc} / \mathrm{s}$	$28-30 \mathrm{Mc} / \mathrm{s}$
$1.7-2.0 \mathrm{Mc} / \mathrm{s}$	$60-66 \mathrm{Mc} / \mathrm{s}$
$6.8-7.1 \mathrm{Mc} / \mathrm{s}$	$112-123 \mathrm{Mc} / \mathrm{s}$

It is possible that some of these may either now or later be occupied by new services of which we are not aware, but if adopted, they would fulfil the primary purpose of gathering together the many independent lines of current development into manageable groups, and creating a basis from which final agreement may more easily spring.

"WIRELESS WORLD" DIARY

OUIR Publishers regret that owing to production difficulties the Wireless World Diary for 1945 will not be ready unti' the middle of December, when copies will be distributed through booksellers and stationers. The price will be 3s. $4 \frac{1}{2}$., including purchase tax.

WARTIME SALVAGE

LAMINATED paper bonded with synthetic resin is being more widely used than ever by radio manufacturers. The shortage of materials is likely to persist after the war and it is, therefore, still necessary to save all waste paper.

Books issued in conjunction with "Wireless World"	
	$\begin{array}{cc} \text { Net } & \text { By } \\ \text { Price } & \text { Post } \end{array}$
FOUNDATIONS OF WIRELESS. Fourth Edition, by M. G. Scroggie	$\begin{array}{rr}7 / 6 & 7 / 10 \\ 10 / 6 & 10 / 10\end{array}$
TELEVISION RECEIVING EQUIPMENT, by W. T. Cocking .	10/6 10/10
RADIO LABORATORY HANDBOOK, by M. G. Scroggle. Second Edition	12/6 12/11
WIRELESS SERVICING MANUAL, by W. T. Cocking. Sixth Edition	7/6 7/10
HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS TELEGRAPHISTS, by H. M. Dowsett and L. E. Q. Walker. Seventh Edition	30/- 30/7
RADIO DATA CHARTS. Third Edition, Revised by J. McG. Sowerby, B.A., Grad. I.E.E.	7/6 7/10
RADIO INTERFERENCE SUPPRESSION, by G. W. Ingram .	5/- 5/4
LEARNING MORSE. 335th thousand	6d. $7 \frac{1}{2} \mathrm{~d}$.
INTRODUCTION TO VALVES, by F. E. Henderson	5/. 5/4
RADIO WAVES AND THE IONOSPHERE, by T. W. Benningto	6/- 6/3
Obtainable from leading booksellers or by post from	
ILIFFE \& SONS LTD., Dorset House, Stamford Street, Lon	ndon, S.E. 1

GALPINS

-ELECTRICAL STORES "FAIRVIEW," LONDON ROAD, WROTHAM, KENT.

TERM8 : Gash with order. No C.O.D All prices include carriage or postage.

ELECTRIC LIGHT CHEGK METERS, first-class condition, electrically guaranteed, for A.C. mains, $200 / 250$ volts 50 cy. 1 phase 5 amp . load, $11 /$ each.

> SOLID BRASS LAMPS (wing type), one-bole mounting, fitted double contact, S.B.C. holder, mounting, fitted 12 vouble cont 16 watt bulb. $4 /=$.
and 12 .
TUNGSTEN CONTACTS, $\frac{3}{18}$ in. dia., a pair mounted on spring blades, also two high quality pure silver contacts, $\frac{8}{16} \mathrm{in}$. dia., also on spring blades, silver contacts, $\frac{16}{16} 1 \mathrm{n}$. dia., also on spring bades,
fit for heavy duty, new and unused. There is fit for heavy duty, new and unused. There is
enough base to remove for other work. Set of four contacts, 4/-.
RESISTANCE UNITS, fireproof, size $10 \times 1 \mathrm{in}$. wound chrome nickel wire, resistance 2 ohms to wound chrome nickel wire,
carry 10 amps. $2 / 6$ each.
SWITCH FUSE in wrought iron case, 3-way, for 400 volts at 40 amp . 45/-.
MOVING COIL ampmeter reading $0-350$ amps., ©in. dia., switchboard type. Price $£ 3$ 10s.
ROTARY CONVERTER, input 40 volts D.C., output $75 \mathrm{v} ., 75 \mathrm{mn} / \mathrm{A}, \mathrm{A} . \mathrm{C}$., also would make good 50 v . motor or would generate. £2.
AUTO TRANSFORMERS. Step up or down tapped $0-110-200-220-240 ; 1,000$ watts, $£ 5$ METAL RECTIFIERS, size $5 \times 4 \frac{3}{4} \times 4 \frac{1}{2}$ ins., not Westinghouse, output 100 volts at $500 \mathrm{M} / \mathrm{A}$, price $32 / 6$; ditto, $5 \frac{1}{6} \times 2 \mathrm{in}$, not Westinghouse, output 100 volt at $250 \mathrm{M} / \mathrm{A}$, price $17 / 6$; ditto, output approx. 100 volt at $50 \mathrm{M} / \mathrm{A}$, price $10 /-$.
POWER TRANSFORMER, 4 kW , double wound, 400 volts and 220 volts to 110 volts, 50 cycle, single phase. Price $\mathbf{\Sigma 2 5}$.
AUTO TRANSFORMER, step up or step down 500 watts, tapped $0-110-200-220-240$ volts 500 wa
\&3 10 .
$\frac{1}{2}$ WATT WIRE END RESISTANCES, new and unused, price per doz., $\mathbf{5}_{/ \cdot}$, our assortment.
MOVING COIL AMPMETER by famous maker, 2in. dia., flush mounting, reading $0-10 \mathrm{amps}$., F.S.D., $20 \mathrm{M} / \mathrm{A}$, price $27 / 6$.

MOVING COIL VOLTMETER, $2 \frac{1}{2}$ in. dia., flush mounting, dual range, reading $0-25 \mathrm{v}$. and $0-250 \mathrm{v}$., external resistance (supplied) is used for 250 v. range, F.S.D. $5 \mathrm{M} / \mathrm{A}$, price $55 /$-.
SEARCHLIGHT, by famous maker, size 22in. dia., 18in. deep, complete with cradle, reflecting mirror 20in. dia., for electric bulb fitting, no bulb, adjustable focus, glass front, price $87 \mathbf{1 0 s}$.
AMPLIFIER COMPONENTS from dismantled American 10 and 20 watt amplifiers, all metal cases and compound filled.
INPUT TRANSFORMERS, ratio 12 to 1 , centre tapped, price $\mathbf{1 5}_{i}$--
INTERSTAGE TRANSFORMERS, ratio 3 to 1 , centre tapped, price $7 / 6$.
P.P. OUTPUT TRANSFORMER, ratio 6.2 to 1 , centre tapped, price 10/-.
POWER TRANSFORMER, pri. $95 / 100 \mathrm{v} ., \mathrm{sec}$. $260-0-260$ at $80 \mathrm{M} / \mathrm{A}$, also 5 v . at 3 A , price $12 / 6$. POWER TRANSFORMER, pri. $95 / 100 \mathrm{v} ., \mathrm{sec}$. $600-0-600$ at $250 \mathrm{M} / \mathrm{A}$; 140 r , at $400 \mathrm{M} / \mathrm{A}$;

AUDIO FILTER, comprising 43 MH choke and 8 MF condenser, 350 v . working. Price $7 / 6$.

MOVING COIL AND M.I. METERS,
FOR FULL DETAILS OF ABOVE AND OTHER
GOODS, SEND FOR LISI, $2 \downarrow$ d.

EALL-ELECTRONIC CINEMAS

$\pi \mathrm{N}$ his presidential address to the L British Kinematograph Society, A. G. D. West submitted a tenyear plan of development for the cinema which might be summarised by the epithet "towards an allelectronic cinema."

The first two years of the plan are allotted to the solution of some of the technical problems facing the industry, particular attention being paid to acoustics and sound standardisation. The president added, "The talkie is 15 years old and it still has not learnt to talk clearly and intelligibly."

Two years are assigned to " settling the colour situation and the stabilisation of screen brightness."
The president foresees the development at the end of six years of "a serviceable and commercial equipment and system for large-screen television in the cinema. It is here that we find our first departure towards equipment which is fully electronic-involving camera pickup devices, cable or radio distribution, and cathode-ray projection."
A further two years should, according to Mr. West, see the completion of colour television in the cinema. Commercial stereoscopy on large screens is anticipated by the end of the ten-year period.

Reference is also made in the report to the use of electronic music.

It is notewortlyy that the formation of a Television Division of the British Kinematograph Society is proposed.

STANDARDISED HEARING AIDS

THE Duke of Montrose, presi dent of the National Institution for the Deaf, asked in the House of Lords what progress had been made by the Government in their negotiations with the hearing aid manufacturers to produce national standardised hearing aids.

Lord Templemore said that the Medical Research Council had set up a committee to investigate standard aids which could be sold at a reasonable price. They are supplied free of charge to ex-service men suffering from deafness due to war service.

FM IN CANADA

PREPARATIONS are being made in Canada for the introduction of FM1 broadcasting, which the Canarlian Broadcasting Corporation believes "should be introduced generally when conditions permit." The first transmitter is to be erected
at the summit of Mount Royal, Montreal, and a second in Toronto. When these stations are established all C.B.C. programmes in the two cities will be broadcast by them for experimental purposes and to provide demonstration transmissions to aid the sale of FM sets.

It is understood some 60 applications for commercial FM stations have already been made in the Dominion.

Dr. Frigon, the new general manager of the C.B.C., has announced that a Radio Technical Planning Board is being established in Canada to go into the question of FM.

E.M.I. APPOINTMENT

S
IR ERNEST FISK, the Australian wireless pioneer, is vacating his position as chairman of Amalgamated Wireless (Australasia) to come to this country to become managing director of Electric and Musical Industries. He joined the Marconi Company in 1906 and went to Australia in 1910 where he assisted in the formation of A.W.A. in 19r3. He was appointed managing director in 1917 and has been chairman since 1937-the year in which he was knighted.

Sir Ernest, who is a past chairman of the Institution of Radio Engineers (Australia) aud an honorary member of the I.E.E. and of the Brit. I.R.E., has played a predominant part in antipodean wireless and bas been a pioneer in the establishment of empire communications. He received the first direct transmission from this country to Australia in 1918.

Sir Ernest Fisk.

AMERICA LOOKS AHEAD

T HE U.S. joint government industry conference which, as reported in our last issue, is actively engaged in preparing recommendations for the guidance of the American delegates to the post-war international radio convention, has discussed several proposals that would radically affect the future organisation of wireless. Some of the most important suggestions made relate to an extension of the normal MW broadcasting band; these range from proposals for the mere addition of three additional channels to the low-frequency end of the band up to the transfer of the entire 2oo$400 \mathrm{kc} / \mathrm{s}$ band for use in ligh-power rural broadcasting.

Other proposals include: amateur allocations- $56-60 \mathrm{Mc} / \mathrm{s}$ plus four channels below $150 \mathrm{Mc} / \mathrm{s}$; radio heating and medical applicationsio narrow bands on various frequencies from 13 to $490 \mathrm{Mc} / \mathrm{s}$.

WHAT THEY SAY

TRIBUTE to Radar.-The Luitwaffe's attacks in the Battle of Britain were met by a scientific plan made possible by radar. It was due to you [the radio industry] that the battle that changed the face of the world was won. - Lord Sherwood, Joint Under-Secretary of State for Air, at the Radio Industries Club.

A SQuare Deal.-.The fact that many [American] amateurs feel it necessary to prepare to fight for their future is in itself little short of disgraceful. If the nation ever owed a clebt to any group of " hobbyists," it owes it to the radio amateur. In peace it was the ham who was always on the job whenever disaster struck a community, generally affording the only means of communication when flood ot wind wiped out normal facilities. With war the country had a readymade band of specialists in radio, an incalculable contribution in a conflict where communications are of such prime importance.-Jack Gould in the Nere York "Times."

Educational Broadcasting. -School-owned FM stations will come, more and more, to broadcast programmes for student listeners during out-of-school hours, designed to supplement the regularly scheduled work of the day school proper. -Dr. J. W. Studebaker, U.S. Commissioner of Education

Friendship Bridge. - Inter national broadcasting is the greatest single instrument created by man for developing international good will-good will that comes back to us

December, 1944

from the hearts of the common people and not merely from the lips of the statesmen of foreign countries. . . . If we close the door on international broadcasting, we close doors to men's minds in a hundred countries of the world.-Paul W Kesten, Executive Vice-President Columbia Broadcasting System

NEWS IN MORSE

THE G.P.O. has advised us of one or two corrections to the schedule of morse transmissions of official news bulletins from the Post Office stations published in last month's issue.

The wavelength of station GIY was given as 5I.50; this should have been 5830 metres ($51.50 \mathrm{kc} / \mathrm{s}$). This station is used for the 0045^{-} or 45 and $1800-1945$ transmissions in addition to those given. Station GIJ is not now used for the transmission from 1915 to 1945

RADIO HEATING

IN a paper on "High-Frequency Heating " read before the Royal Society of Arts on November 15 th, Dr. L. Hartshorn, of the National Physical Latoratory, gave a résumé of the fundamental basis of heat generation by electrical methods. The paper dealt chiefly with the higher radio frequencies used in dielectric heating and touched on the possibilities of selective heating in laminated materials with layers of different dielectric characteristics

"TELEVISE TO ADVERTISE"

DURING the four months ended in August the number of applications for commercial television stations in the United States was more than doubled

There are still only nine stations operating, but applications for new commercial stations have reached the surprising total of 68 . These stations will be erected in twentyfour different States

According to the RIKO Television Corporation, which conducts the television programme-building service with the slogan "Televise to Advertise,' there is a market for nearly fifteen million television sets in the areas to be covered by these stations.

CANADIAN NEWS

WHEN giving evidence before the Canadian Parliamentary Radio Committee the generalmanager of the Canadian Broadcasting Corporation stated that the Corporation is "awaiting the crystallisation of conditions in the U.S. before committing itself to a definite policy on the establishment of a television service in the Dominion." It was also pointed out that the C.B.C. would need a large Government grant if it undertook research work in the field of television.

Wireless World

In an 8o-page report placed before the Committee on behalf of the sisty-four privately owned stations in the Dominion, the view is expressed that Canada's second broadcasting network should be placed in the hands of private enterprise and that a broadcasting control commission should be set up.

It is also recommended that the receiving licence fee is increased from $\$ 2.50$ to $\$ 3$ so that it would be unnecessary for the Corporation to sell time" to increase its income.

PERSONALITIES

Lord Woolton has been elected president, and Sir Percy Ashley vicepresident, of the 13ritish Standards Institution.
E. L. A. Mathias, general manager and chief engineer of the Marconi Wircless Telegraph Co. of Egypt, has been made an O.B.E. for services to the Forces and in connection with military operations in the Middle East.
J. W. Ridgeway, who was appointed assistant manager of the Radio Division of Ediswan in 1929 and manager in 1940, has been elected to the board of the Cosmos Manufacturing Co. He has been chairman of the British Radio Valve Manufacturers' Association for the past three years.
E. Y. Robinson has also been elected to the board of the Cosmos Manutacturing Co. He joined the Metropolitan Vickers Co. in 1922, and transferred to the Cosmos Manufacturing Co. in 1927 as chief engineer of the valve department. He became chief engineer of the contrany in 1929.
B. St. John Sadler has been appointed managing director of Rediffusion, Lid. He was formerly commercial manager of Marconi's Wireless Telegraph Co., Ltd.

IN BRIEF

War News.-When replying to a question in the House of Commons regarding the lacilities for the transmission of news from correspondents with the British Army on the Continent, Sir James Grigg announced that threequarters of the high-speed wireless transmissions from our Forces in N.W. Europe and all the high-speed teleprinter circuits are used exclusively by the Press.

Radio Officers are urgently required for civilian work of national importance in the North Atlantic Air Services. Applicants, who must have the P.M.G First Class Certificate and experience of high-frequency DF work, should apply to "Civil Aviation," Radio Officers' Union, 37, Ingrebourne Garderis, Upminster, Essex.

Bravery at Sea.-The Editor of The Signal, the official magazine of the Radio Officers' Union, writes: "/ We are proud to state that since the beginning of the war, to date, 33 Radio Officers have been awarded Lloyds War Medal for Bravery at Sea.

Wireless Circuits Reopened.-Cable and Wircless announce that the London to Athens and London to Paris wireless circuits have been reopened for Press traffic only. The circuit to Athens,

Nature bas so plannel it that out of hack earth come beautiful tlowers and the foods essential too our very sustenance. And so it is that frout the durkness oi the present hour
sufterge a crenter degree of undergiaudis
emerge a greater degree of undergauding among men ... thore treedom for untohi millions and gdvaticed jueas to make man's burdens lighter and life more enjoyable. Astatic, like so many other manufacturing concerns, has treen broadenend by the experience of war production, has entplosed its engineeriag skill and manufacturing facilities to create new products, the principles of which will be reflected in Astatic's commercial wider cisitian of a new day

THE ASTATIC CORPORATION YOUNGSTOWN, OHIO U.S.A.

TORONTO, CANADA.

Frank Heaver Ltd. Kingsley Road

World of Wireless-

which originally opened in 1937, has been closed since 1941

Canada's Radio Industry produced $\$ 16,000,000$ worth of apparatus a year just prior to the war. This year's estimated total will be $\$ 200,000,000$. Measured by dollar value, the output of telecommunications equipment ranks sixth in the Dominion's war products. Canada is producing vast quantities of radar gear, the largest type of which incorporates 60,000 parts, including 270 valves.

Brit.I.R.E. Council.-At the recent annual general meeting of the British Institution of Radio Engineers the following were elected to the General Council: P. Adorjan (Rediffusion), J. W. Ridgeway (Ediswan), H. Brennan (Universal Relay, Gateshead), Lt. Col. F. Taylor (War Office), T. D. Humphreys (Cossor), and M. M. Levy (Standard Telephones and Cables). The following members remain on the Council for a further 12 months: G. A. V. Sowter (T.C.M.), Sqn. Ldr. S. R. Chapman, L. H. Bedford (Cossor), N. McLachlan (Philco), W. W. Smith (C.E.B.), and J. Dimmick (Norwood Technical Institute). G. A. V. Sowter has been elected Chairman for the year 1944-45.

Wireless School Transfer.-No. I Wireless School, Queen Mary Road, Montreal, Canada, has moved to Port Hope, near Hamilton, Ontario. Thousands of airmen and women who have graduated from it as wireless operators, wireless mechanics and radio telephone operators are now serving on all fronts.

Girton Radio Bursary.-Hilda R Ridyard, of Audenshaw, has been awarded a State Bursary for a threeyears' course in radio at Girton College, Cambridge.

Brit.I.R.E.-I26 candidates entered for the graduateship examination of the British Institution of Radio Engineers which has just been held in various
centres in this country and overseas and in prisoner-of-war camps. The President's Prize for the most outstanding candidate in the Graduateship Examination and the Mountbatten Medal for the most outstanding candidate serving in the Forces have been awarded for the previous examination to Sgt. T. R. Nisbet, serving in India. The S. R. Walker Prize for the second in order of merit has been awarded to P / O. H. N. Gant, R.N.

Licence Record.-According to the latest figures, some 250,000 more receiv. ing licences are in force than at this time last year. There are now $9,609,503$ in Great Britain and Northern Ireland.

MEETINGS

Institution of Electrical Engineers

Radio Section.-" The Measurement of Balanced and Unbalanced Imperiances at Frequencies near $500 \mathrm{Mc} / \mathrm{s}$ and its Application to the Determination of the Propagation Constants of Cables'" is the subject of a paper to le given by Dr. L. Essen at a meeting to be held on December 6th. On December 19th, Dr. D. C. Espley will open a discussion on "The Sound Channel in the Television Receiver."

Both meetings commence at 5.30 at the 1.E.E., Savoy Place, Victoria Embankment, London, W.C.2.
Cambridge and District Grout,II L. Kirke, Chairman of the Radio Section, will repeat his inaumural address at a meeting to be held on November 28 th. "Applications of Psychology to the Engineering Industry" is the subject of a paper to be given by Miss A. W. Heim and K. J. W Craik on December 12th. The meetings commence at 7 o'clock at the University Engineering Department, Trumpington Street, Cambridge.

Midland Amateur Radio Society

The Society meets at the Birmingham Chamber of Commerce, New Street, Birmingham, at 6.30 on the third Tuesday of each month. Details can he obtained from the Hon. Sec., E. I. Wilson, 48, Westbourne Road, Olton, Birmingham, 27.

Institute of the Plastics Industry

Dr. A. C. Dunningham will lecture on " Heat Utilisation in the Moulding Shop " at a meeting to be held at 6.30 on November 28th at the Waldorf Flotel, Aldwych, London, W.C.2. Nonmembers should apply to the Secretary, H. F. Judd, I8, Danson Road, Bexleyheath, Kent, for tickets.

During the more mobile phases of the war in Europe, wireless equipment capable of relatively 10 ng ranges has come into its own. This photograph shows a well-camouflaged 'Command' vehicle used for communication between Corps and Divisional Headquarters. Some idea of the relatively high power of the apparatus can be obtained from the inset.

Letters to the Editor

Post-war Reorganisation • Domestic Acoustics-Synthetic Sound

Aviation Radio Beacons

WARTIME development of aviation and radio bespeaks as great a change in our habits of thought as in out habits of life, but there is reason to fear that our thinking lags and that the cost to us may be serious.

There is, for example, grave need of economy in the use of the radio spectrum if the latter is to meet our essential needs. The interest in that economy, more"over, is global, as is the scope of aviation and radio. However, the aviator is not the only person who has essential need of radio, for any radio beacon may be the means of saving the life of a sailor, yachtsman, explorer or prospector, even though that beacon were installed without regard to his needs.

These thoughts are prompted by reports of proposed changes in the frequencies of commercial radio - navigational aids in America. That the contemplated frequencies are in the ultra-high or so-called "optical" band is beside the point, which is that beacon frequencies should now be allocated on a global basis, so that each, of itself, identifies latitude or a longitudinal great circle

Regardless of political boundaries, beacons on a given latitude should have the same frequency, which might be modulated to indicate latitude. Special cases should be met by derivatives of this basic method:

To facilitate discrimination, latitudinal and longitudinal frequencies should be in separate and sufficiently separated bands, and adjacent parallels or great circles should have adjacent and sequential frequencies, each of such parallels or great circles having but one carrier frequency, starting at, say, Greenwich and proceeding westward.

Assuming that such a frequencyallocation system were adopted, radio beacons could be installed anywhere by any authorised person with a minimum of delay

The design of radio-navigational receivers would be simplified, and the beacons would serve for the benefit of anyone, anywhere, who had taken the precaution to equip himself with a suitable receiver and frequency-annotated map. Other results would be an immense economy in the use of the radio spectrum, and the instant provision of radio beacon frequencies for world coverage Thereby any kind of navigator anywhere could be appraised of his location by reference to data and recourse to apparatus which would not be costly, complicated or cumbersome.

ARTHUR H. MORSE

New York.

Reorganising Broadcasting

MAY I offer the following suggestions for post-war broadcast organisation
I. That a frequency separation of io kc / s be universally adopted.
2. That all stations send on an exact multiple of $10 \mathrm{kc} / \mathrm{s}$ for simplicity of reference.
3. That radio receivers be calibrated in multiples of $10 \mathrm{kc} / \mathrm{s}$, e.g., 65, 66, 67, etc., for MW. These figures could then be referred to as "channels" and thus end the perpetual frequency versus wavelength war. The initiated would mentally add a nought and know it to be frequency in kc / s.
4. That all simultaneous and common wave broadcast be abolished, as experience shows this to be detrimental to quality. Most people would prefer fewer but more perfect programmes rather than a large variety of nothing worth listening to.

C. J. M. BOSWELI.

Norwich

" Acoustics of Small Rooms"

I FOUND this article (your November issue) extremely informative, as it gives quantitative data on a subject in which I am interested.

THE "FLUXITE QUINS" AT WORK.
"Our aerial's fixed, good and true
Trust FLUXITE to see the job through Bowled OI, "I declare Why there's washing up there!" It's my clothes line you've soldered!" sried 00.

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 30 years in Government works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, $8 \mathrm{~d} ., 1 / 4 \& 2 / 8$.

6

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET-compact but substantialcomplete with full instructions, 7/6.

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings AND SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.
The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price $1 / 6$, or'filled, 2/6.
ALL MECHANICS WIL HAVE

IT SIMPLIFIES ALL SOLDERINO

Write for Book on the ART OF "SOFT"

 SOLDERING and for Leaflets on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price 1d. each.FLUXITE LTD.
(Dept. W.W.), Bermondsey Street, S.E.I

Letters to the Editor-

The problem of too short a reverberation period at low frequencies can be very much alleviated by introducing an artificial " echo," either by use of an echo chamber or by use of an electromechanical delay system consisting of, say, a magnetic disc recorder and a series of reproducing heads.

The problem was attacked experimentally hefore the war by Poste Parisien, and gave very m^{n} teresting results in an experimental hour they held at that station.

It is a " post-war plan" of mine to install some such system myself, and now that full publicity has been given to the subject it would not surprise me if highfidelity receivers of the future all possess a knob marked " Reverberation'" and calibrated in seconds!

But what the "non-coloration" school of reproduction fans would say I shudder to think !

> R. G. YOUNG

Wimbledon, S.W.ig.

Synthetic Music

ALTHOUGH C. C. Buckle has effectively disposed of the arithmetical "proof" in H. A. Hartley's letter, there remain some points which require stressing :
(a) Mindful of what has already been done by Pfenniger (who, by the way, is mentioned in the Oxford Companion to Music), I wrote my article ${ }^{1}$ with eyes fixed on the future. Hartley ignores this achievement and concerns himself with what he maintains is possible now.
(b) I wrote from the point of view of composers who suffer much "excruciating horror" when they hear their works misinterpreted.

It may be worth reminding readers that Dr. Alexander Wood has recently referred to the synthetic creation of a variable-area sound track, remarking that " the technique has great possibilities, since it is open to the creative musician to cut records corresponding to sounds which have never yet been heard on land or sea." ${ }^{2}$ If the technique does involve a great deal of spade work and meticulous analysis, why should not the compcser be one of a team-in other words, a creator of music $\dot{a} l a$ Disney-and

> The Editor does not necessarily endorse the opinions of his correspondents
rule as the creative main spring and final arbiter of all that was produced in his laboratory? The advantage is that the composer would have personal contact with his workers: no sound-track would emanate from his studio without his approval and imprimatur, and the results would be very much closer to his original conception than 99 per cent. of normal performances, even when conducted by the composer during his lifetime. For let me assure Mr . Hartley that printed music is far from being an exact indication of the notes the composer wanted to be played. Disregarding interpretative and instrumental questions of historical authenticity (a major difficulty with old music), a score is only " a first rough indication of the (sound) curve" desired by the composer. The curve is the composition, and the score only part of a very imperfect means to its attainment. ${ }^{3}$

Being a lover of music in its present form, I, too, view with misgivings the prospect of a synthetic revolution, yet realise my qualms are due to sentiment and tradition. It must be agreed that the continual translating of the same printed notes into sound-at least on the symphonic scale-is a most cumbersome and expensive process, often hard to justify asthetically or economically.

Regarding the question of a different kind of music, which Mr. Hartley is certain won't be music, I would hazard the opinion that synthetic technique, by freeing the art from the circumscribed powers of the human hand, will father the introduction of "a continuous scale in which every interval can be made perfect ... for, in the last resort, our limited scales have their origin in the limitations of our hands. ${ }^{4}$ Overwhelming advantages like this may make the synthetic revolution carry all before it.

PATRIC STEVENSON.

[^6]
High-quality Recordings

「HE opening remarks of Peter W. Granet's letter, in your November issue, on the quality of American recordings, are indicative of the wide interest shown in the technical quality of commercial recordings.

This is understandable as the ioo per cent. Purchase Tax (on the wholesale price) of commercial records makes us all more careful when purchasing new discs these days. But it is not always fully appreciated that British recording companies have been and are producing some recordings of retnarkable technical quality, under extremely difficult working conditions, and shortage of skilled labotir, as well as limited raw materials. In fact, without refer ring to questions of frequency response, dynamic range, "' balance," and spatial effect, the quality of the surfaces of many of our solid-stock pressings is the envy of certain American record manufacturers to-day

Of course, unfortunately, a uniformly high standard is not reached by all English recordings, and a number of inferior records, even including "swingers," are still issued to day; hence the need for selection. Adverting to the question of surfaces, although English records are, on the whole, quieter than American records, I am not alone in noticing an increase in noise-level on even the best English recordings issued in the last twelve months or so. I have not been able to discover the precise reason, but it may be the use of substitute raw materials and / or a longer working run from individual pressing stampers. Several excellent surfaces, however, in recently issued discs lead one to believe that improvements are being made.

Finally, I append a few recent recordings of outstanding technical merit, and may I mention, for the benefit of interested readers, that the British Sound Recording Association is hoping to publish a pamphlet listing all the high-grade records mentioned in these columns since 1938, with many others, as the number of inquiries received for such information seems to warrant its compilation?
H.M.V. DB.6I72, Mozart's
"Symphony No. 32 in G," by
B.B.C. Symphony Orchestra,
under Boult; H.M.V. DB.6ı7I, Strauss' "Blue Danube," by N.B.C. Symphony Orchestra, under Toscanini-a good American recording; Decca K.1ogi-4, Bliss' "String Quartet," by Griller String Quartet; and Decca K.1095-7, Ferguson's "Octet," by augmented Griller String Quartet-these Decca discs are fine examples of chamber music recording; and I heartily concur with Mr. Hartley's good opinion (October, 1944, Wireless World) of the British Council sponsored H.M.V. series, among which the Liverpool Philharmonic Orchestra's performances, under Sargent, have a magnificent quality of realism. (The Liverpool Philharmonic Hall seems to possess ideal acoustic properties for sound recording.

DONALD W. ALDOUS
Torquay, Devon.

RF Volume Expansion

MANY interesting articles on volume-expansion have appeared in the Wiveless World during the last year or so, all working on the principle of altering the gain of audio-frequency amplifier stage

I should like to suggest an alternative method; namely, altering the gain of a radio-frequency amplifier

Assuming a superhet receiver is available, the scheme may be outlined as follows. First, take any of the circuits suggested for providling a posifive control voltage with increase of volume, embodying any desired arrangements to give unequal "pick-up" and "decline" delays-for example, Fig. 7 of Williamson's original article of September, 1943. Omit the controlled valves ($\mathrm{V}_{2}, \mathrm{~V}_{3}$ of of that diagram) and associated components, and use the output of the gramophone pick-up to modulate a small dynatron oscillator ${ }^{1}$ operating at the intermediate frequency of the superhet. The modulation depth should of course be kept low, say, 25 per cent. or less, to avoid distortion, but this would be satisfactory, as ample power would be available.

Then couple the output of the modulated oscillator to the input of the IF amplifier of the receiver, and transfer the controlled grid-

[^7]returns of this amplifier from the normal AVC line to the contrast expander control voltage.

The number of valves required, assuming the receiver already exists, would be no greater than in the original design; in point of fact, two less, it is not found necessary to use amplification between pick-up and control grid of dynatron oscillator

With a "straight" receiver, using tuned RF and having AVC it would be possible to use an oscillator working on some frequency to which the receiver will tune, injecting the modulated RF into the earth lead with suitable precautions to avoid radiation

It would appear that the principle could also be used for volume-expansion in radio programmes; in a receiver employing delayed AVC a volume expander control voltage could be used as the delay voltage which the rectified radio-frequency signal must overcome before the AVC begins to operate.

I suspect that some experimenting would be needed to avoid selfoscillation, for the volume expansion control voltage would have to be taken from the already "expanded"' audio frequency; but a suitable attenuator between the loudspeaker voice coil terminals and the rectifier of the expander should overcome this possible cause of trouble.

I am at present unable to try the suggestion, but if any of your correspondents make experiments on these lines I hope he will publish the results in your columns.
C. R. COSENS.

Cambridge University Engineering Laboratory.

CHANGE OF ADDRESS

The Sales and General Offices of De ia Rue Insulation, Ltd., are now at Imperial House, 84, Regent Street, London, W.i. (Telephone Regent 2901.) A full range of the company's products is available for inspection at this address.

GOODS FOR EXPORT

 The fact that goods made of raw materials in short supply owing to war conditions are advertised in this journal should not be taken as an indication that they are necessarily available for export.

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4\% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma. per pair no load, and 160 ma. full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.

The response curve is straight from 200 to $\mathbf{5 , 0 0 0}$ cycles in the standard model. The low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil.

A tone control is fitted, and the large eightsection output transformer is available to match, 15-60-125-250 ohms. These output lines can be matched using all sections of windings, and will deliver the full response to the loud speakers with extremely low overall harmonic distortion.
PRICE (with 807, etc., type valves) $£ 18.10 .0$ Plus 25% War Increase
MANY HUNDREDS ALREADY IN USE Supplied only against Government Contracts

[^8]
VELOCITY-MODULATION TUBES

I
ordinary practice the discharge stream is first whiected to a radiotrequency field which speeds up any in phase electrons relatively to the uthers. It is then passed ihrouglı a tipldless "drift" gap, where the faster electrons overtakte the slower, so that the main striam is broken up into bunches which recur at equal axial intervals and deliver energy to a suitable resonant circuit.
By contrasis, in the present arrangement, the electrodes of the discharge tube are so arranged that the effect of the applied Rl fiek is to deflect the in-phase electrons outwards from the axis of the tube, thus lorming a fastmoving tubular stream, the hollow centre of which is filled by the slowerinoving electrons. The target electrode is a disc with a forwardly projecting centre piece or rod, so dimensioned that the slower elections strike against the front end of the rod at the instant when the faster electrons reach the disc at its base. This serves to impulse a hollow resonant chamber forming the output circuit.

The full available energy is thus extracted from both sets of electrons, whilst the effect of mutual repulsion is reduced, as compared with ordinary " bunching," because the maximum density is less.

Marconi's Wireless Telegraph Co., Lld. (assignees of W. A. Zalesak). Convention date (U.S.A.) October $30 / h$, 1941. No. 5619!1.

FM SIGNALLING SYSTEM

AN "operative" carrier wave is first produced by frequency-modulating one RF sine wave by a supersonic wave, say of saw-tooth form. The resulting wave is therefore one in which the frequency varies continuously and periodically throughout any desired range. This range is next modulated by the signal, and is then transmitted in periodic "pulses" of constant repetition frequency.
In the absence of any signal message, the radio-frequency content of any one pulse of the operative carrier will be the same as that of any other pulse (since the recurrence frequency is constant). However, the presence of a signal will cause successive pulses to be advanced or retarded in phase. The extent to which the phase of successive pulses will change is determined by the

A Selection

of the More Interesting

Radio Developments

which provision is made for automatic sensitivity control, so as to ensure the maxintum signal-to-noise ratio.

Marconi's Wireless Telegraph Co. Ltd. (communicated by T. L. Goltier). Application dale December 21st. 1943. No. 56I33I.

TUNING DEVICES

AN iron-cored inductance is mounted in line with, a screw-type trimming condenser to form a compact tuning unit, say for a "midget" type of set, the arrangement being such that the tuning and trimming adjustments can be made from opposite sides of the chassis.

The core C of the tuning coil L is moved to and fro by inserting a screwdriver in the slotted end of a threaded spindle S. The outer tubular electrode K of the trimming condenser is spaced slightly apart from a screw-threaded inner electrode K_{I}, the far end of which fits closely into a second tube N. held by an insulating collar M in alignment with the tube K. Part of a spring wire W, which is coiled around the outside of the tube N, passes through a peripheral slot to engage the screw thread on the rod K_{1}; this allows the

amplitude of the signal, whilst the frequency of the phase-change is a function of the ofrequency of the signal.
Since the carrier pulses recur at definite intervals, they can be received by a frequency-discriminating circuit in
latter to be moved in and out of the electrode K by using a screwdriver on a slot Si .
C. A. W. Harmer; J. W. Dalgleish; and Pye, Ltd. Application dale February 19th. 1943. No. 561787.

PROPOSALS have already been made to replace the usual fluorescent screen by one which is mounted outside the cathode-ray tube and illuminated by an electric lamp, through a suitable " shutter" under the control of the incoming signals. The present invention discloses the use of a "deformable" liquid, which automatically allows more or less light to pass the screen in response to the impact of a signal-modulated stream of electrons.

As shown, light from a lamp L is mrojecter through an oplical system, comprising the shatter device S, on to a viewing screen M . The shutter consists of a trough containing a heavy mineral oil, such as apiezonol. In the absence of any signal, the passage of

Electronic light valve for television.
light from the lamp L through the gap G to the viewing screen is completely blocked by a bar B. The impact of the negatively charged scanning stream momentarily deforms the normal alignment of the molecules of the liquid S, and so deflects the light rays over and around the bar B to the extent required to reproduce the received picture. The electrostatic deformation produced by the electron stream is purely local, and persists only for a short but definite interval of time, after which the liquid molecules revert to their normal condition ready to respond to the next impact of the scanning stream.

Ges. zur Forderung der Forschung, etc. Technischen Hochschale. Convention dale (Szeitzerland) August 2xth. 1940. No. 561926 . Addition to 543485.

TRANSMISSION LINE NOISE

FF a coaxial transmission line happens 1 to pass near an AC powep circuit, "hum" voltages are induced between its two ends and ground, which mav be several times stronger than, say, the television signals it carries. These pick-up potentials will affect both the inner and outer conductors of the tránsmission line.
To eliminate them, the outer conductor or sheath is directly earthed at the sending end, whilst at the receiving end it is coupled, through a resistance, to the grid of a phase-reversing valve. The output from the latter is fed, preferably through a cathode-loaded " buffer" valve, which does not alter the phasing, to an impedance con-
nected to the delivery end of the inner conductor of the line. The grid of the receiving valve is tapped to this imprdance it a point where the hum roltage from the onter conductor is batanced by that induced in the inner conductor, so that the signals carried by the latter alone pass through the amplifier. One advantage of the arrangement is that the hum voltage is cancelled out before the combined signal-and-hum voltages on the inner conductor can reach the line amplifier, so that mo cross-modulation occurs.

Philco Radio and Television Corporation (assignees of F. J. Bingley). Convention date (U.S.A.) February 3rd, 1942. No. 562569.

FREQUENCY MODULATION

THE action of the circuit shown depends upon the variable capacity response to a low-frequency current of a condenser in which a "blocking layer" (such as is used in rlry contact rectifiers) forms the dielecuic between two fixed plates set not more than one-tenth of a millimetre apart.

The grid circuit of a back-coupled valve V includes a condenser K of the kind mentioned above, arranged in shunt with the usual tuning condenser C. Low-frequency signals are applied to the blocking-layer condenser from terminals ' T , together with a fixed biasing voltage from a battery B. An auxiliary condenser CI_{I} of low impedance to the carrier-frequency oscillations prevents the signal currents from being short-circuited.

As the effective capacity of the condenser K varies in rhythm with the amplitude of the applied signal voltage,

the corresponding instantaneous changes in the tuning of the grid circuit will givé rise to a frequency-modulated carrier wave in the output circuit of the valve.
" Patelhold," Patentverwertwngs and Elektroholding A.G. Convention date (Switzerland) October 28th, 1941. No. 561323.

> The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/- each.

JUST as the reliability and ingenuity of BULGIN RADIO PRODUCTS have been proved in the stress of War, so in the World of Tomorrow Industry can safely trust us with their component problems and requirements.
The return of Peace will find us ready to ease a large part of your production difficulties. Our technique, with a background of 21 years of experience solely devoted to the manufacture of essential components, will safeguard your trade mark.
(Please quote priority and Contract Nos.)

"The Choice of Critics"

Registered Trade Mark
A. F. BULGIN \& CO. LTD., BYE PASS RD., BARKING, ESSEX Radio and Electrical Component Manufacturers.

TEL.: RIPPLEWAY 3474 (5 lines).

UNBIASED

By FREE GRID

Nostalgic Neurosis

MANY of you have probably heard the story about the girl (perfectly proper, my dear Mirs. Grundy) who was rather given to association with the American soldiery at present in this country and had, therefore, inevitably picked up a good deal of their forthright and robust phraseology. Eventually her mother ventured to remonstrate with her about certain aspects of her newly acquired vocabulary and said: "Mary, my dear, I want to speak to you about the words you use; one of them is 'lousy ' and the other 'swell.' ' "Oh, yes, mother," replied the bright young thing in an interested manner, " and which of my words is lousy and which is swell? ",
I have used this small story as an opening gambit as I, like the girl's mother, am going to venture on to very dangerous ground and remonstrate with the B.B.C.'s women announcers about the very objectionable words they use, although I would hasten to add that I do not for one moment suggest that they obtained them from American soldiers.
It may lee argued that Wiveless World is a technical journal and I have no business to butt-in on what is purely a programme matter But I am in good company, since the Editor himself thundered ex cathedra quite a long time ago against the B.B.C.'s Italo-Portuguese rendering of the pronunciation of the French colonial town of Brazzaville. Apart from this, I feel

Nostalgic memories

justified, as although we of Wiveless World are primarily concerned with the means whereby the B.B.C. communicates with its listeners, surely we are entitled to have some small say about the use to which our labours are put.

The two words about which I wish to complain are perfectly normal and proper when used sparingly and in their proper context. But every evening the B.B.C.'s women announcers persist in prefacing about 99 per cent. of the sentimental slush which their duties compel them to put on the turntable by telling us that the tune we are about to hear is either a "nostalgic" or a "haunting" melody. I have no doubt that these young ladies went to what are usually known as good schools, but it is very evident that the study of English literature was not prominent in the curricalum; otherwise, their vocabularies would have been more extensive.

If I may venture to make a suggestion, I would recominend a course of good reading with Shakespeare as an hors d'ceuvre, but with stronger meat such as Carlyle and Emerson to follow. Personally speaking, the word " haunting" always reminds me of ghosts and other unpleasant things, while " nostalgic" conjures up gloomy memories of my early days at school.

For once Mrs. Free Grid agrees with me, which is rather surprising, as my remarks are directed against members of her own sex. However, she qualifies her agreement by saying that the B.B.C.'s young ladies are probably acting under the orders of the male caucus which rules at Portland Place. Be that as it may, I feel that only the tongue of the redoubtable Mrs. Mop could do full justice to my sentiments about the constant reiteration of these two overworked adjectives.

Peak for Pain

$\mathrm{M}_{\text {plyssioleareane }}^{\mathrm{Y}}$ " Diallist's" physiological failing of being unable to detect $A C$ from $D C$ by touching the insulated portion of an electric light switch, which he mentions in the November issue of this journal, can easily be remedied if he removes the cover and bridges the two contacts with his thumb and forefinger, the switch being in the "off" position. If the mains are AC he will receive a considerably greater shock than if they were DC of the same voltage. "Peak for Pain" will serve as a better memory-jogger where this little dodge is concerned than all " Diallist's " mnemonics in verse.

Notwithstanding this, it is apparently RMS which actually kills, according to a little book I have been reading by an ex-warden of the famous Sing-Sing Prison, where

- Undoubtedly AC.
the electric chair was pioneered as far back as 1890.

A ProphetVindicated

THERE have, I am sorry to say, been a number of base attempts by readers to manœuvre me into an entirely false position about a prophecy I am supposed to have made in the October issue of this journal to the effect that the war would end on October 27 th, 194. Actually I neither said nor suggested anything of the kind, as any of my detractors who had bothered to read my words carefully would have realised. I said nothing about 1944 or, indeed, about any particular year.

One reader whose name is a household word in the world of wireless goes even farther and tries to link up my utterances with those of a Chinese sailor who, so he alleged, made a similar prophecy in a London evening paper (The Evening Standard) on March 29th last. Needless to say, the Chinese sailor and myself are two entirely separate entities (do I look like a Chinese sailor?) and in any case the Chinese sailor, too, is being maligned as I have gone to the trouble of looking up his remarks in the particular issue of the evening paper mentioned, and he also was careful to avoid mentioning any specific year. No doubt, he is, like myself, an ex-politician.

This sort of attitude on the part of my readers reminds me of those queer souls who write indignantly to the Press whenever the utterance of some prophet about the end of the world has failed to materialise. They always seem quite indignant to find themselves still alive and well, with the old world still sailing serenely along on its way through the heavens.

MUMARD
 Introluce mize am-Gmass mominioun:

A neve methoal of construetion which overcomes many of the problens of maintainimg efficient valce operationct high radio fraquencios
A
DEVELOPMENT OF THE
MULLARD
LABORATORIES

THE MULLARD WIRELESS SERVICE CO. LTD, CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C. 2 (98)

Hermetically sealed

to resist heat and moisture

B.I.

MOULDED TUBULAR

CONDENSERS

Manufactured in a wide range of capacities and for working voltages up to and including 6.000 D.C. For high-voltage operation they provide the most effective solution where size and weight are important considerations and are designed to operate continuously in extremely arduous conditions of temperature and humidity. Manufactured in three sizes and supplied with soldering tags at each end, or alternatively with one soldering tag and a or alternatively with
stud for base fixing.
BRITISH INSULATED CABLES LTD. Head Office - Prescot - Lancashire

FOR THE

RADIO SERVICEMAN DEALER AND OWNER
The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his Diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day radio service work. We train them to be successful!
Special terms for Members of H.M. Forces and discharged disabled members of H.M. Armed Forces

INTERNATIONAL CORRESPONDENCE SCHOOLS Ltd.

DEPT: 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C. 2 Please explain fully about your Instruction in the subject marked X

Complete Radio Engineering. Radio Service Engineers. Elementary Radio. Television.
And the following Radio Examinations :-
British Institution of Radio Engineers.
P.M.G. Certificates for Wireless Operators.

City and Guilds Telecommunications.
Wireless Operator and Wireless Mechanic, R.A.F.

AND DIELECTRIC COMPOUNDS TO GOVERNMENT SPECIFICATIONS—FOR

CONDENSERS
 - CABLES
 - TRANSFORMERS - COILS

A.I.D. AND C.I.E.M.E. TYPE APPROVED FOR ARCTIC AND TROPICAL CONDITIONS Used and Recommended for Service Components

NORFOLK HOUSE, NORFOLK ST., STRAND, LONDON, W.C. 2
Telephone: TEMple 5927

It isn't isn't what ? Isn't a watt!
It's the c.g.s. unit of energy.
WHAT'S "ERG"?
ERG is the trade mark identify. ing a line of products that will be available when we've finished the biggest job of all.
ERG RESISTORS LTD.
1021a, FINCHLEY ROAD, LONDON, N.W.I1 PHONE: SPEEDWELL 6967
nanaine
ERG
n+esor

TRANSFORMERS and CHOKES
For RELIABILITY SEND US YOUR ENQUIRIES
OLIVER PELL CONTROLTM
CAMBRIDGE ROW, BURRAGE ROAD. WOOLWICH LOMODIVS

Rate 6／＝ior 2 lines or less and $3 /-$ lor every additional line or part thereot，average lines $5-6$ words． Press Day January， 1945 issue，first post Monday， December 11th．Box Numbers 2 words，plus $1 /-$ ．No December 11 th．Box Numbers 2 words，plus $1 /-$ ．No responsibility aecepted for errors．

NEW RECEIVERS AND AMPLIFIERS COMMUNICATION receivers．Remember Ud．，Dale aiter the war．－Dalc Enectronics HIRSTLY，season＇s greetings to friends in we have had the pleasure of serving．A happy ＇hrisimas to you
W＇E are pleased io offer the following goods which are actually in stork and cail lop despatched without delay
AMBASSADOR I＇A 143 radio amplifier． 15 w output，radio or records with real volume犬27／15／6；suitable grey steel cabinet speakers £3／12．RO＇HERNEL Brush piezo－crystal pick－ups，latest Senior model，$£ 3 / 18 / 9$ ． LOUD Speakers．－－IRola sin PM moving coil no transformer．22／－：Celestion 8in PN mov ing coil，with transformer， $30 /-$ ；Celestion 10 n with trans． $45 /-$ ；Celestion $8 i n$ mains，ener gised 2,000 ohms field， 36
IEASURING bridges．－We have been for tunate in seouring a few more Mullard mea suring bridges．The latest type， 15 gns ．ea． IULJ，ARD cathon MULLARD ECR 30 3in cathode ray tubes complete with holder，4gns．G＇IIC Argon filled relay， 25 ／
AEFCO moving coil microphone，with Meico stand，$£ 7 / 15 / 6$ ；Meico mike trans， $12 / 6$ VIBRATORS，Mallory 6v 4－pin，22／6；Bulgin $6 y^{*} 6$－pin self－rectifying $20 /$ bases 1 CAR radio plug and distributor suppressors $2 / 6$ each；dynamo condensers，3／－each；tele scopic aerials（few only），21／－；ex teriston radio parts， $29 / 6$ ．
radio parts，Modern Radio Test，Gear Construc－ tion，＂1／6；＂Amplifier Manual，＂2／－；＂Radio Valve Manual，＇ $3 / 6 ;$ ：＂Radio Inside Out，＂
 II．P．RADIO SERVICES．Letd．5s．Colton，Iiverpool，4．Tel．Aintree 1445. Eti．，Walton，Hiverpool，4．Ael．Aintree $[3280$
Estab． 1935 ． QUALITY amplifiers， $200-250 \mathrm{v}$ ace 5 w ， requirements，both types；s．a．e．for leaflet and copy＂Design for Quality，＂－John Brierley，
［3195 A．St．Paul＇s Ave．，Lytham St．Annes．［3195 A MPLIFIERS．－Cormplete equipment for tions and portable apparatus from 15 to 150 w ． early deliveries；illustrations and spec．on early deliveries；illustrations and spec．on request－－Broadcast and Acoustic Equipment
 26970．

HENRYS offer t．r．f．a－valve ac／de wave，complete with all cont－ ponents and drilled chassis $10 \times 4 \times 2 / 2$ ，easy io build，circuit supplied，5ft speaker，no other extras；cabinets for same， $22 / 6$ ； 7 days de－ lwery．－Henry ${ }^{\text {Pa }}$ ，5，Harrow Rd．，Edgware Rd．，
［3217 A NEW type of high fidelity amplifier，out gain， 98 d．c．b．with 5% deg．， 12 months： mantenarice guarantee， 43 gns．，a so a range of quality amplifiers， $15-30$ watts，ac or univer－ sil，with microphones and speakers；imme－

diate delivery．．Electron（London），Ltd．，31， Curzon St．W．Wi．Gro 1993．［3255 （ $)^{2}$（10 only．－New 7－valve＂Wireless control stage， 8 watts push－pull triode output， price includes super Quality triple cone， 12 in permanent magnet speaker with large matched output transformer and all valves；as above for realistic reproduction for public address， for realistic reproduction for public address， limadio，75，Suser Rd．，S．Croydon．Tel．Croy－ | lon 4226 for demonstration． |
| :--- |
| d 2772 | RECEIVERS，AMPLIF あ』－W Vortexion multi ratio output G． 12 GDDYSTONE S．W．preselector，ac mains， dere，Kent．

 £28．－Box 3282 ． 3269 A．mike，むろ0．－Collins，wells Re．，Chil compton，near Bath． T．M．V all－ware battery set，£ll；Philips Barlen Rd．，Brighton．［3242 1 ALLICRAFTER Bkyrider 23 ，with speaker Rogers，Summerhill．Market Drayton，$[3248$ HALLICRAFTER 827 receiver for sale，in 121，Kingsway，London，W．O．2．［3191

CHANGE

The firm of N．PARTRIDGE wish to inform the Trade that in future they will be known as

PARTRIDGE

TRANSFORMERS LTD．

CHANGELESS

it is to be stressed，however， that this change will in no way affect the high quality of products，speed of delivery（ 14 days for experimental items），or technical service which has been synonymous with the name of PARTRIDGE since the inception of the firm 15 years ago．

Telephone

Abbey 2244

PARTRIDGE TRANSFORMERS LTD

TPYROBITIT Tester
 Pat．applied for

is indispensable for
Wireless Engineers，Repair Shops， Factories，etc．，for Testing C．ontinuity，Earth connection，Leak－ ages，on all kinds of tools and apparatus

ASK FOR LEAFLET Completely foolproof

ACRU ELECTRIC TOOL MFG．CO．LTD．
123．Hyde Road，Ardwick，M／c， 12

Under Defence Regulations 1939，Statutory Rules and Orders 1940，Number 1689．a permit （T99G）must be obtained before sale or purchase of certain electrical and wireless apparatus particularly such valves and apparatus as are applicable to wireless transmission．

COMMUNICATION receiver， $7-\gamma$ complete 20．With power supply and matcher speaker £20；would exch．for Avo mod．7．－Box 3271 DHILCO 3－wave batt，receiver，\＆10；wanted ing cobinet to SX17．14，Common Rd．，Evesham IDWEST＇Royale 24．P， 6 wavebancis， Offers，9，Goodyers Av．，liadlett，Herts． NA＇lONAI，NC8IX，10－tube super，crys．gate Shure crys．pick－up；offers．－Box 3266
A MPLIHIEIRS 16 －watt ontput，with turn A table，mike and speakers，200－240v ac－dc； also 6 horn speakers．P．m．type－－Universa］
Electrical，221，Cits Rd．，F．C．1．
［3197 M ANUF ICTURERS＇（．A．（PX25＇s），com 1 plete with Ferranti M．I．and Baker $12 i 1$ speakers，also R．F．unit，perfect；f15／15，－54，
Dugdalc Ilill I，ine，Potters Bar．Tel．4045． UPERHET 5－valve，complete kit of high thorough de－coupling circuit supplied，listed price £20；nearest offer $£ 10$－－Box 3287 ．［3278 R．C．A．Phototone amplitier，using westing－ K．liouse rectifiers and two UX250s，type No．R1197，for 110 volt ac mains，price 216 ； also several valves， 4033 A and 4074A，at list －Darley 39，Coolhurst Rd．，N．8．Mou． 9234. HOR sale，very excellent wireless receiving set， Hate 1939 model，as new，can receive any transmission in World，Hallicrafts，Chicago， stal i，S．X 17 Super Skyrider 10 －valve，cry stal tuned，with matching speaker，price
\＆100；viewed by appointment．－Box 3286 ． $1{ }^{1} \mathrm{OR}$ sale， 6 only， 5 －valve superhet radios， $1{ }_{1}$ two wave band press button，ac $200 / 250 \mathrm{v}$ ， in working order，at $£ 21$ ，including purchase hatter superhet，as above，not press button， at $217 / 19 / 6$ ，less battery．－Lasky＇s Radio， 370，Harrow Rd．，Paddington，W．9．［3224 A MBASSADOR 7－valve radio amplifier， $\mathbb{E} 18$ ； A W．W．Q．\＆．super receiver and Q．A．，words， duode de iuxe，$\npreceq 10$ ；Auters： 1940 Decca table both sides，cost \quad Baker 7 －valye amplifier， 12 in speaker，new，$£ 19 / 10$ ．Wanted，Iwin triple speaker，new， 12 v ．car radio．－Bert Carswell． portable and 12 V cal radio．－Bert Cars 3243 118，Union St．．Glasgow．LOUDSPAKERS
NEW Broadcast P．M．lond－speakers， models； $12 i n .12 w a t t ~$
dia voice coil；12in $25 w a t t$ 18，000 lines， $18 / 4 i n$ dia，voice coil； 12 in 25 watt 18,000 lines， $21 / 2 \mathrm{in}$ dia，voice coil；15in 40watt 18,000 precision built dia，voice cor T＇iconal magnets，detacliable dia instruments，coms die－cast chassis，uniform response， phrams，die－cast chassis，unance and finish accuracy，tonal quality
superior standards in fidelity，sensitivity superior deliveries；specifications and illus．upon prompt deliveries，spest．－Broadcast \＆Acoustic Eq．Co．，Ltd． Broadcast IIouse，Tombland，Norwich．［2537 E $/ 15$ only．－Brand new Baker super Quabity 12in Abdilorium permanent magnet speaker with triple cone，madufacture facturers of moving coil speakers since 1925 wille frequency range，even response，ideal tos quality reproduction，fitited with magnet hav ing exceptionally high flux density in the aif gap，suitable for public address equipinen when quality reproluction is first considera tion；send $21 / 2 d$ ．stamp for leaflet giving detail of above and constructional details of a new aconstic chamber designed to extend loud speaker irequency range；also constrictional details of an infinite baffle cabinet；every music lover interested in realistic reproduction ahonld write for leaflet．
\＆ $8 / 15$ only．－Brand new Baker super power cinema permanent magnet speakor with 18 in triple cone of new design，giving wide fre quency response free from objectionable reso－ nances；speech is clear and natural and music is reproduced with exceptional realism；fine engineering job，extremely sensitive，heal for public address equipment when power hand－ ling capacity plus realistic reproduction is required．－Bakers Solhurst Radio．75，Sussex Rd．，S．Croydon．Tel． 4226 for demonstration LOUDSPEAKERS SECONDHAND
O^{A} K acoustic chamber，Vitavox speaker also H．M．V．double turntabses with VOIGT Twin， 1943 ，brand new and perieci \＆16；Voigt home constructor＇s horn professionally made，\＆ 10 ．－Box 3284. MHREE Epoch super cinema lowd speakers，
6 v fields．What ofiers？－L．W．Jonking 16．College St．，Camborne，Cornwall．［3176 VoIGT unit，new twin cone \＆20；Epoch cinema model，50／\％；ac／de $3 v$ Midget set，
wkg．，no cab．， $70 / \%$ plus carr．，s．a．e．－Box 3281 ．

The SOLON Electric Insulation Stripper provides a quick method of severing the insulation neatly without damaging the conductor, by means of an electrically heated wire. Full details are given in Folder Y.9, which also describes the range of SOLON Electric Soldering Irons and the SOLON Electric Solder Pot.

W. T. HENLEY'S TELEGRAPH WORKS COMPANY, LIMITED,
 WESTCOTT • DORKING • SURREY

LASKY'S RADIO

370, Harrow Rd., Paddington, W.9 (Op. Padd. Hospital.) Phone: Cunninghom 1979 OFFER FOR SALE THE FOLLOWING: THIS MONTH'S SPECIAL OFFERS 24 assorted Condensers, consisting of 8 mfd . 500 v .4 mfd .650 v .16 mfd .350 v . (can type), $2 \mathrm{mfd} .500 \mathrm{v.} ,1 \mathrm{mfd} .500 \mathrm{v.} .5 \mathrm{mfd} .250 \mathrm{v} .,$, $.25 \mathrm{mfd} .350 \mathrm{v}_{\mathrm{o}}, .05 \mathrm{mfd} .500 \mathrm{v.,}$.I mfd. 350 v .,, .01 mfd .500 v., etc., etc. All for $\mathrm{E2}$. Post free. 2 mfd. Block Paper Condensers, 650 v. wrk., $2 / 6$ each. 4 mfd .700 v.w.. $5 / 6$ each. 4 v . mains transformers, $350-0-350,120 \mathrm{~mA}$. $33 / 6$ ea., and $6.3+5$ volt heaters, $32 / 6$. Small crocodile clips, $3 / 9$ doz. Cards of 114, $\frac{1}{4}$ watt resistors, all marked and useful values, fl 12 s . 6d. per card. Servisol at $5 /-$ per tin, Systoflex, assorted, at $2 / 3,2 / 6$ and $3 /-$ doz, Volume Controls, $\frac{1}{4}, \frac{1}{2}$ and 1 meg.. less switch, at $3 / 6$ each : with switch, 5/9 each. .2 and .3 amp. mains droppers, 4/9,5/9 and $7 / 6$ each. 3 amp. 3-way line cord, 70 ohms, per foot, best quality. at $5 /=y d$
Slow Motion Dial and Drlve Escutcheon type, $2 / 6$ each. Resistors, assorted, Kit of 48 $\frac{1}{4}, \frac{1}{2}$ and I watt, at $£ 1$ lot.
Smoothing Chokes, Midget type, 650 ohms $60 \mathrm{~mA}, 6 / 6$ each ; larger type 500 ohms 160 mA., I5/6 each. Medium and long-wave coils with, reaction, at $10 / 6$ per pair. Universal With, reaction, at $10 / 6$ per pair. Universal
Speaker Transformers, $7 / 6$; Class B and QPP, driver and output types, 9/6. Pentode' S/Trans., 5/9 each. Solder, Resistances, tin copper wire, soldering irons, knobs, toggle switches, 2 and 3 gang condensers, etc. Midget Medium Wave coils, A. \& H.F.'T.R.F. Cirt. with diagram, $10 / 6$ pair. Cheaper type, 8/6 pair.
SPEAKERS. Rola P.M., 5in., $21 /=$; 6 $\frac{1}{2}$ in., 21/6; 8in., 23/6 each. Goodmans $3 \frac{1}{2} \mathrm{in}$. P.M., 27/6; 10 in., $39 / 6$ each. Celestion 10 in. P.M., with Transformer, 45/6. In stock, over 5,000 new boxed English and U.S.A. mains and battery valves at list prices.
Send Id. for our lists of mains transformers, etc. Send us your requirement C.O.D., BUT

CASH WITH ORDER PREFERRED.

DAVENSET HT2 charger, as new, $£ 6$ Wallis. 'Twerton-on-A Mon, Bath, Som. $\mathbf{R}_{1,000}^{\text {OTAR }}$ convertor. with, starter, as new offer accepted - 4 , Woolmer Rd. Nottinanable Tel. 89068.
[3177 POTARY convertors, $11 / 480$ volts, 20 watts, Iree; Woma, special price of $£ 4 / 15$ each, post each.-Lasky's Radio, 370 , Harrow Rd., W. 9 ALL types of rotary converters. electric A. motors, batitery chargers, petrol electric generator sets, etc., in stock, new and secondhand; supplied against priority orders only. WARD, 37, Whito Post Lane, Hackney Wick, T. Two second-han 1393.

1 rotary convertors factory reconditioned rolts rotary convertors, 110 volts dc input, 230 for 16 mm projectors. -Write Box T17 New Bond St., London, W.1. Rew Bond St, London, W. 1 .
R orary converters, dynamos, motors. large o 230 v i.c., 50 watts, $£ 7$ ilo: 250 w d.c
 213
75 v d.c. to 230 v a.c., 1,500 watts. \&25; Miges $75 v$ d.c. to 230 v a.c., 1,500 watts. \&25; IIigss
110 v d.c. to 7.5 v 14amps d.c., $£ 5$; Crompton llov d.c. to $7.5 v$ 14amps d.c., $£ 5$; Crompton aicrnator, $3 \mathrm{k} . \mathrm{v.a} 110 \mathrm{v}, \mathrm{f} 18:$ dynamos, 6, 12 ,
25,50 , 110 and 220 v up to 10 kw , motors, a.c. and d.c., up to 10 hp : lists aralable; stamp.-Harris, Strouds, Bradifeld, Berks. Stamp-LECTRADIX dyammos and motors at bar double current, 6 v and 600 y and It G.E.C $37 / 6$, plig. and carr. paid; supplied Eng. and mates only; refind 5 on returned cases; dc motors, $\frac{1}{5}$ h hp and hip de motors, enclosed, shaft, first grade make revs, double-end $1 / 2$ in shaft, first grade make, guaranteed, $1-5 h p$, Eng. and Wales: others in stoclin carr. paid 214, Queenstown Rd.. Battersca, London.

NEW MAINS EQUIPMENT
VOR'IEXION mains transformers, chokes C.P.T.B.: why supplied to G.P.O. B.B.C. L.P.T.B.; why not you? Imitated but unGqualled; orders can only be accepted against GORTEXION contract
Wimbledon, London, S.W.19 The Broadway, Wimbledon, London, S.W.19. Lib. 281.
A VOMINOR Universal, new:
Galgate Barnard Caste, Richard A VOMESER model 7 , \&i9/10; Aro Durham new Bux 3270. with mains filter, $£ 13 / 10$, is $\sqrt{\text { F.M.I. }} 1943^{\circ}$ all-wave battery oscillator 3220
r. as nu, new, chart, less batteries; 11 gas - NicholOU, 2, Matlock Rd., Anbergate.
SCIILOSCOPE, modified Wireless SCILLOSCOPE, modified Wireless World
complete with time base and amplifier What offers? North London.-Box 3277 .
Dililco battery signal generator, less bat over teries, range $100 \mathrm{k} / \mathrm{cs}$ to $20 \mathrm{~m} / \mathrm{cs}$, also WUESTON valve voltmeter, Box 3268 . [3212 W ESTON valve voltmeter, type 669, \&18; Q.2505, £17; both little used and as new. 246. Stanl y Rd. Bootle, Liverpool, 20 . [3241 246. Stanly Rd. Bootle, Liverpool, 20. [3241 Tice engineers; nakes 20 lists; interest ing booklet on request; from all wholesalers or direct; send for leaflet "R.1."-Runbaken, Manchester. use; posa, purchased 12 nitls ago, 30 hours use; £50-- Th. Taieb, 57. High St.. Hodiles don. Ilerts. Tel. (evngs, only) Hodlesdon 3102 . description, British or eto, test gear of every serviced, recalibrated.-A. Inckelsber repaired, john," Crofton Lane, Orpington, Kent. [3031 A VOME'TER Universal, 36 range, $£ 13$. Fer A. ranti 21/2in scale meters, m.c. 1.000 ; Fer-$0-7.5-15-30 \mathrm{~m} . \mathrm{a} ., \quad \mathrm{f} 3$; $0-250 \mathrm{u} . \mathrm{m.c}, 1,000$ o.p.v. £3/10; 0-5-50-250v, d.c., © 3 ; Weston 2^{1} in m.c. type F.O.1, panel fixing $0-5 \mathrm{~m}$. ditin m.c. type F.O.1, panel fixing, 0-Sman, ditio, Fidelity Piezo P.U., 3 gns.; cash or codGidelity Piezo P.U., 3gns.; cash or c.o.dTPRIPLETT oscillator, model
TRIPLETT oscillator, model 1231, \&9; pressure, £25: Van Dorn $1 / 4 \mathrm{in}$ caparity electri. drill, with adjustable spring return electric £14; stanelco "Fuzit" wire jointer, as new, £5; 550 pressphan bobbins, tagged with ew, tended cheeks for M.E. 59 laminations 3 i stack, suitable O.P. transformers, small chokes. etc., 6/- doz.; 80 pressphan bobbins. 1% in stack, for Rola, 5 laminations, 6/- doz; new 7OL7GT, $15 /-$; well made 125 watt auto trans formers. tagged with engraved figuring 110 / 200/220/240, $25 /$ - ea.; Bakelite tubes $41 /$ in long $\times \frac{1 / 2 i n}{}$ dia., 4/- doz; riveting ta.gs, 6/-100. buyers must collect heavy mechanical item. 15 miles N.W. London.-Box 3269 . 3219 CABINET8
YEAK amplifier cabinet, also radiogram 1 cabinet, perfect.-Details, Box 3285 .

HARBIGFLEX BEARINGS LIMITED TIDDINGTON ROAD - BTRATFORD-ON-AYON

HILL \& CHURCHILL BOPKSELLERS

SWANAGE DORSET

ENGLISH \& AMERICAN BOOKS IN STOCK ON RADIO AND TELECOMMUNICATION

CATALOGUE ON APPLICATION

SPEAKER REPAIRS by Specialists
 gutilshed monthy Wo bold an export ltcetwo for Northern Ireland. A.W.F. RADIO PRODUCTS
 Eorough Milla, Sharpa Stroes, Bradford, Yorks.

For high quality loud speakers when the good times come again
"There is exeeptionsl delay in
dealing with correspondence just dealing with correspondence just
VOIGT PATENTS LTD.

RENMMND
Armatures, Fields, Transformers, IPickups, Fractional H.P. Motors. ie Speakers Refitted New Cones \& Speech Coils. All Guaranteed and promptly!executed. Valves, B.V.A. and American, good stooks. Send stamped addressed envelope, for list of Radio Spares,
A.D.S. Co

261-3-5, Lichfield Road, ASTON, BIRMINGHAM, 6
\subseteq PECIAL offer to clear.- 150 approx. extel sion speaker cabinets, polished wainut suitable ior 6in to sin speaker unit,
$13 /$ - each.-Write Box 3264 . GPECIAL offer to clear.-. Loudspeaker cabl nets, polished oak, $12 / 6$ and $15 / 6$ polished walnut, $17 / 6$ each, delivered in any quantity; any type of radio cabinet made to order, send us your enquir. 3030 Bros., Ltd., New York Rd., Leeds, 2. [3030 VALVES
COULPHONE RADIO, New Longton, near U Preston, ior a better valve service; al Tungsram and B.V.A. valyes at present manu OUR adaptors will help in replacing un esting booklet on valve replacements: trade eng. inviled.-V.L.S., Radio House, Juislip. VALVES.-See November issue. Pen4DD and packing 9d; c.o.d., but cash with order refersed.-Iondon Sound Labs., Lid. 40 , , Molton Lane, Bond St., London, W. 173 ALVES, surplins to our requirements, 473
Mullard, 277 Brimar, 202 Marconi, 473 Mazda, 32 Cossor, 19 Philips; all guaranteed new; send us a note of your requirements; these or their equivalents we will despatch immedialely c.o.d.; all valves offered for sale at manufacturers' retail price lists.-Larg's, 18-24, Whitelall St. Dundee. EQUIPMENT COIL M/C P.U., £5: Monocial AC. Super © £5.-31. Senior Ave. Blackpool. [3228 ROTHERMEL mike 105 , with stand, as new, В т. H. needle armature p.u.; B.T.H. inNayler, 4. Barton Lane, Braunton N. Devon. DARMEkO recorder, comprising cutting ilt. Coís for filters, tone contruls, eic transC formers and chokes wound to your specifi-cation.-R. Clark, 30, Langland Crescent, South Stanmore, Middx. complete in 12888 A.C. record-player, complete in walnut 4 sif, new: Remington shaver ac Tunnvile, Vigilant 2175 - - Box 3280 .
MORSE EQUIPMENT

MORSE practice cquipment for class-room or indiviclual tuítion: keys, indio oscil. Radio, 14 , Solso si., W.1. Ger. 2089 . $[2291$ COMPONENTS SECOND.HAND, SURPLUS A CORNi- I few of the following types in $9001,9002,276$ each.
WOUL'IUVIFTRRS.
W'O'E 'T"IOVIF'IRRS, variable, wirewound 0-10 olms, complete witl knob; $3 / 9$ LINE corel, goort qualits, 60 ohms per ft, 2 way, BU. J , and soNS, 246, Iligh St. N.W. 10 . M. ALIORY 6-volt 4 jing vibrators, $15 /-$ each, stockpori Jid., Denton, Manchester
NEW Univ. Avo, megger, radio ins. OP12K EW Univ. Avo, megger, radio ins. Oplak
lapped n and s. Voigt unit and horn, Arthry an 6valve chassis; offers,-Box 3255 CONDEVSERS, 0.0002 , Hew, boxed, 6 d , ea,
$5 /$ - doz. $42 / 17 / 6$ gross. Leeder, 18 , I'oteridee Crescent. Iligh Wycombe, Bucks. IPINCEPAL high-grade components for $7^{1 / 2} / 2$ \&12/10.-Willinson, University Col., Swansea. COIL, units, built-in switeh, 0.0005 connec U tions, a. rf, ose, 4 band, 9.5-550 metres $456 \mathrm{kc} / \mathrm{s}$, i.f., 5 -band, $10-2,000$ metres, 465 D.N. speakers, 6^{1} in. 19/-; 0.3 voltage drop Lack pers, $4 /-;$ ' 1 .R.F' coils, $6 / 6$ pair; push hack wire, $2 /-50 \mathrm{ft}$; vol. controls. $3 /-$, with TIRST Pretuned Quality receiver, £7; AF5, $1120 /-;$ OPM1, $20 /-;$ choke, $20 /-; 2$ mains
 2/6; Irarlley Turner crystal pick-up, $90 /$ ot 215.-Box 3257.
MEICO" moviog coil microphones. mas Permag speakers with transformer, $\mathcal{E 1 / 1 0}$ Bin, Iess transformer, $£ 1 / 2 / 6$; mains irans ormer bobjins, 4 v or 6.3 v heaters, $17 / 6$ electric soldering irons, $12 / 6 ; 100 \mathrm{ma}$ chokes 10/6; Midget 60ma chokes, 6/6; pentode out put transtormers, $7 / 6$; multi tap with c.t. $8 / 6$; twin mains flex, $7 / 6$ doz yds: resin cored solder, $4 / 6 \mathrm{lb} ; 18 \mathrm{~g}$ t.c. Wire, $4 /$ lo 1 b $2 \mathrm{~m} / \mathrm{m}$ sleeving, $2 / 9$ doz yds; 0.2 amp drop pers, $4 /-i, 3$ amp, $5 / 6$; volume controls, $3 / 6$, 4/6; solder tags, condensers, valve holders largo stocks valves, etc.; all service require ments; orders above $10 /$ - nost free (mail order only).-A. Huckelshee, "Hazlejohn," Crofton
Lane, Orpington, Kent.
$[3032$

PREMIER RADIO
PREMIER 1-VALVE DE LUXE BATTERY MODEL S.W. RECEIVER, complate with 2 -volt Falve, 4 colls covering, 2 -1ro metres. Built 0 including tax.

STEEL CHASSIS
 Undxilled.

NEW PREMIER S.W. COILS

4- and 6-pin types now have octal pin spaciرg nd wil fll 13 ernithonal Octal valve holder

4-PIN TYPE		6-PIN TYPE		
Type	Range Price	Type	Range	Price
01	(1)-15 m. $2 / 6$	Of	9.15 m .	$2 / 6$
114	12.24\% m. $2 / 6$	050	12.26 m .	2/6
$10+B$	$42.47 \mathrm{~m} .2 / 6$	0613	22.47 m	2/6
04 C	41.94 ml 2/6	0ic	41.94 m .	$2 / 6$
041	76.170 ml . $2 / 6$	(16)	7 h .170 mm .	$2 / 6$
04 Hz	$1.40 .350 \mathrm{~m} .3 /-$		CHASSIS	
0) $\mathrm{HF}^{\prime \prime}$	$2,55.550 \mathrm{ml}+3 /-$		MOUNTI	
049	490-1,000 m. 4/-		TAL HOL	ERS
04 H	1,0330-2,000 mi. $4 /-$		10!d. ea	
New	$\begin{aligned} & \text { Prumier } 3 \text {-Band } \\ & 6 \text { in. } 4 / 9 \text {. } \end{aligned}$		il, $17-25$	

PREMIER SHORT-WAVE CONDENSERS All-brass construction, easily ganred. 15 mmfs. $\cdots \cdot \frac{2 / 11}{} 100 \mathrm{mmid}$. $3 / 11$ $4 / 8$ $5 / 8$ Bakelite Dielectric Reaction Condensers and Condensers.
 0001 mf 1/3, 0003 mf. 2/11, 0005 mlf . $3 / 3$ each 0003 mf . Difterential
 Sie wound S.W. Ghoke, $5-200 \mathrm{~m}$
 Brass Shaft Couplers, tin. bore Flexible Couplers, tin. bore $1 / 3$ $2 / 6$ each Flexible Couplers, 㤟in. bore $1 / 6$ each

 SWITCHESQMB, nanel mounting, Eplit knob type, e-point on/off $2 /-$ each. Double pole un/off $3 / 6$ each.
SPECIAL OFFER. J'renier Midget Coils. So SPECLAL OFFER. Yremier Midget Coils. Sot
of three A.HF. and Osc. $200-557$ metres. Jnter of three A. 1 . and Osc. $200-5 s$, metres. Onter coil, $2: 3$ each. Tuning capacity 0005 mfd 60 mmfl. trimmers, 1 - each. l'mider for Osc

VOLUME CONTROLS
Carbon type 20.000 and y meg., $3 / 9$ each $5,000,10,0000.50,000,100,0004, \frac{1}{2}$ aud 1 meg $4 / 6$ each.
Wire wound type, 300 aus 10,000 ohrns, $5 / 6$ each
MOVING COIL SPEAKERS
Rola 6 in. P.M. Speater, 8 ohms voice coil, 25/
Rola 8in. P.M. Speaker, 3 ohms voice coil, $25 /$ Above speakers are less output transformer. Pentode Output Transformers, $3 \frac{1}{2}$ watts, price $10^{\prime} 6$ each.
Celestion or Plessey 8in. P.M. Speaker, 29/6. Celestion 10in. P.M. Speaker, 49/6. formers

PREMIER MICROPHONES.
Transvarse Current Mike. High-grade large-out put unit. Res
level, $23 /-$
Premier Super-Moving Coil Mike. Permanent Magret model requiring no energisiag. Sensitivity 56 db . Impedance 25 ohnis. Excelleat reprodnction of speecls and music, 25/5/=
Microphone Tiransformers, $10 / 6$ each.
Crystal Mike. Response is ait from $50-5,000$ cycles Crystal Mike. Response is ait from 5 w- 5,000 cycles. Output level is minus 60%. Price 39/6. Chromium Collapsible Type Microphone Stand, $52 / 6$.

RESISTANCES
Tapped, $360 \times$ $180 \times 60 \times 60$ ohms, $5 / 6$ each. $80,800,700,600$ 1,060 ohms, 500 : The

MOVING COIL METERS
30 amps. charge, discharge, bakelite case, 19/6
each
Send for details of other Accessories. New lis railable.

ALL ENQUIRIES MUST BE ACCOM
PANIED BY A 2ld. STAMP
PREMIER RADIO CO.
ALL POST ORDERS TO
JUBILEE WORKS, 16\%, LOWER CLAPTON ROAD, LONDON, E.5. (Amherat 4723.)

CALLERS TO

UBILEE WORKS or
169, FLEET STREET, E.C.4. (Central 2833.)

CHARLES BRITAIN RADIO (K. H. Ede) SERVICE kits.-See page 28, Nov. issue. MAINS trans., ex R.G.D., with fixing feet, silver finish, $350-0-350 \mathrm{v}, 100 \mathrm{ma}, 4 \mathrm{v}$ 4a,
4 y la, brand new and boxed, $30 /-$ Midget t.r.E. coils, m.w., 5/6 pr; 40pi-50pi trim mers, $4 / 6$ doz; 0.0003 reaction conds, $2 / 3$ ea; push button units, 12 -way, with escutch. but no knobs, $5 / 6$ ea; Yaxley type switches, 2 pole-2 way, $2 / 3$ ea; 2 pole- 3 way and 3 pole 4 way, $3 / 6 ; 2$ pole-4 way 3 bank, with screen, 6/- ea; Philco switch wafers, 6/- doz. TUBULAR condensers!-Really good range 0.1 mf 600 w wkg, $10 /$ doz; 0.1 mf 500 v wkg, $8 / 6$ doz; 0.1400 v wたg (small), 7 doz; $0.05,0.04,0.03,0.02,0.01,6 / 6$ doz $0.005,0.004,0.002,0.001,5 /-$ doz; mica conds, $0.01,12 /-\mathrm{doz} ; 0.002,0.001,6 / 6$ doz $0.0005,0.0003,0.0002,0.0001,5 / \mathrm{doz}$ lhilips ceramic conds, 12 p -470pf, 3 /- doz asstd.; special offer, sample parcel containing 6 each of above, 120 conds, for £2; smoothing chokes, ex H.M.Y. (new), 120ma, 500 ing chokes, ex HiAh. KNOBS.-Best quality brown $11 / 4 \mathrm{in}$, with brass inserts, $7 / 6$ doz; ditto pointer brass inserts, $7 / 6$ doz; ditto pointer to clear, $3 / \mathrm{l}$; doz; all the above for ifin to delear, spindie; Erie volume controls, 100,000 ohnus. with switch, $3 / 6$ or 3 for $10 / \%$ screened wit switch, $3 / 6$, orgths $9 d$ ea: Marconi cabe, twin, $1 / 4$, engths, 9 , ea, vertical, $2 /$
 ea; paper dials for Midgets, 2-band, 8/- doz. TIIIS month's special offer-10-way pusibutton units, all-wave, with padiers and trimmers, ex R.G.D. (damaged), $15 /$ - ea; for other components see page 28 , Nov. Britain
 Radio (temp. address), Efrey. $\quad[3239$ A RMSTRONG EXP48 coil pack. 4 bands. 2465 kc i.f. transiormers, drilled chassis, G 6 rated Bras Barne Herts GRPRANI Bohmetors 150 mA one T- FRRANTI m.c. meters, wo 150 mA , one ca., also high \& medium voltage h.f. trans. flament trans., various l.f. chokes, all heavy laty and pre-war, no junk; s.a.e-box 3279 .
TASKY'S RADIO-Small serewdrivers for \therefore grab screws, ete., 4 in blades. 1/3: 1 -watt resistances 36 on a card, from 250 megohms to $1.8 \mathrm{meg}, 22 / 6$ card; 3 -gang condensers, mounted on push-button unit with 3 buttons, few only, $27 / 6$, as nets; $2 \mathrm{mld} 700 \mathrm{v}^{\mathrm{w}}$ condensers, bloch paper type, $2 / 6 ; 0.3 \mathrm{~A}$ mains droppers with fixing feet, 800 megohms. variable, 5/9; 0.2A 5/6; 1,000 megohms: knobs all sizes in stock, $7 / 6$ and $8 / 9$ doz; $10 z$ reels, $1 / 2$ and 1 in insu lating type, 9 d reel; 5,000 new boxed b.v.a mains and battery valves in stock at list price plus purchase tax; Midget nerial and h.f. med ware coils at $8 / 6$ pair; ditto med. and long at $10 / 6$ pair; valve holders, all kinds, at $8 / 6$ doz.; all val. voloume controls with switch at $5 / 6$, less swilch at $3 / 9$; speakers, output trans formers, mains transformers; 2-gang arid 3 gang 0.0005 tuning condensers in stock; pointer knobs, $1 /$ - earh; small dials for midget radio, $1 / 6$ each: push back wire, twin screened cable $1 /$ - per yard; comprehensive range of condensers in sfock; 0.1 mfd 350 volt, $8 / 6$ doz.; 0.05, 0.04, 0.03, 0.02, 500 v at $6 / 6$ doz.: bias cond., $50 \mathrm{mfd} 12 \mathrm{v}, 2 /$ - each: Radio Valke Manual, $3 / 6$ each; send for our current list, 1d.-Lasky's Radio, 370, IIarrow Rd., Pad TIIE Simplex Four, theoretical circuit dia 1 gram of 4-valve, m. wave ac-dc t.r.f Miclget, with all component values, $1 / 6 ;$ con plete kit of parts, valves, etc., for this mos smecessful midget receiver, $£ 9$: Midget aeria and h, f, m. wave. t.r.f. high gain coils, $9 /$ pr. แI. and $\}$ wave. ditto coils, 11/- pr. ; short kes. $5 / 6$ pair; Midget 2 -rang variable 0.0005 mfd condensers. $15 /$; ditto 3 -gang, $14 /-;$ Midqet chassis, sprayed grey, de $11 \times e$, $101 / 2 \times 6 \times 2 i n$, $10 \times 41 / 3 \times 2 \mathrm{in} .5 / 6$; Midget dials, in. wave, $4 \times 31 / 2$ iu, 2/-; S.m.l. wave, $7 \times 4 \mathrm{~m}, \mathrm{~mA} 12 / 6,120$ makes, $15 /-$ Midget speaker trans. (ven), $7 / 6$; 10-walt, $20 / 1$ ditto, $10 / 6$; Celestion 8 in p.m speaker, witll trans, 30%; Midget rotary speakcr,
switches,
onf, $3 /-;$ d.p.s.t. $3 / 6$, d.p.d.t, $4 / 6$
3 -way, 60 ohms ft, 0.3 amp, $6 / 6$ sine cord, 3 -way, 60 ohms it, 0.3 amp, $6 / 6$
litto, $5 /-\mathrm{vd}$; mains droppers, 0.2 yd; 2-way ditto, $5 / 6 ; 0.3 \mathrm{nmp}, 800$ ohms. 5/6; wirewonnd 10 -watt resistances, 100,60 , 30 and 24 ohms, $1 / 6$ each; wirewound pots. for bridges, etc, 2,000 ohms, $6 / 6 ;$ muts and screws, 4 BA , brass, $7 /-$ gross; 6BA ditto 6/-gross; trimmers, $/ 6$; double, ceramic, 80 and 40 pids each, 2/-; comprehensive list, $21 / 2 d . ;$ s.a.e. enquiries; postage all orders.- () Greenlick, 34, Bancrift Rd., Cambridge Feath Greenlick, 34. Banc

FIIKobisi

Ansicers all ohM's LAW problems-for example What will be the voltage when current I flows through resistance R ?
What will be the voltage with watts value W and I current flowing?
What is the current flowing where watts value is W What voltage is EP
voltage is E ? What will be t
voltage EP the resistance where current I flows at What will be the resistance where watts W is at What wige E
What will be the resistance where watts W is at What is the ?
What is the wattage of voltage E through resistance R ? What is the wattage of current I through resistance R P What will be the wattsge of I current at E voltage P 1 ohm to $1,000,000$ ohms. From 1 milliam Front amperes. From one-tenth of a milliwatit to 10,000 FULL INSTRUCTIONS WITH EACH INSTRUMENT Revised Price 6/6
Order at once whilst deliveries are good
IONIC LABORATORIES LTD.
6 Cranbourne Terrace, Salt Hill, SLOUGH, BUCKS, ENG

WAVEBAND RADIO

"LUSTRAPHONE"' Moving Coil Microphone. In modern N.P. case, beautifully finished. Impedance $20-25$ ohms. Dimensions: 2 tin $\times 4$ in. with socket tapped $i n$. thread. 85/- (7 days' approval allowed).
VOLUME CONTROLS. Every value in stock,
with switch, $5 / 9$. SPEAKER FIELD COILS 2,000 or 1,500 ohms, $8 / 6$.
TRANSFORMERS. 25 watt P.P. O.P. trans TRANSFORMERS. 25 watt P.P. O.P. trans-
formers, 27/6.
CHOKES.
CHOKES. Heavy duty chokes, 30 hys. 120 m.a. 200 ohms, $14 / 6$.
REPLACEMENT BOBBINS, for either 6 v .
or 4 v. mains transformers, 18/6.
TWIN H.F. Suppressor chokes, 4/6. METAL BUZZERS, 2ϵ.
WALSALL Moving Coil Milliampmeters, $2 \frac{1}{2} \mathrm{in}$. diam., bakelite case, 55 .
INDUSTRIAL Solder frons, 18/6. CAR VIBRATORS, 12 volt, 15
CARBON RODS
CARBON RODS, i2in., for Sunray Lamps, Bin. diam., 1/-
DROPPERS.
DROPPERS. $3 \mathrm{amp}, 800 \mathrm{ohms}$, with feet, $5 / 9$. SWITCHES. D.P.D.T. Rotary Switches, $4 /$
WIN SCREENED WIRE. 6 yards for $7 / 6$.
TECHNICAL PUBLICATIONS
" Modern Radio Test Gear," fully illustrated, 1/9.
Wireless Amplifier Manual, 2/3. Short Wave Radio Handbook, 2/3. Direct Disc Recording. $2 / 3$.
RADIO INSIDE OUT." A complete handbook for the repair man, 4/9.
AMERICAN SERVICE BOOKS still available. of November issue. advertisement on Page 28 of November issue.

WAVEBAND RADIO LTD.
63, Jermyn St., Piccadilly, London, S.W. 1
G. R. RYALL, 36, Huron Rd.. S.W. 17 TWO-WAY screened flexible, good quality, $1 / 3$ yard, 3 yds $2 / 9$; twin screened, high insulation \& cotton outer cover $1 / 9 \mathrm{yd}$, 4 -way $2 / 3$ yd. TEN-WAY cable, good conductors, $1 / 3$ yd, 3 yds $2 / 9$.
OCTAL, 8-pin plugs with base, complete with insul. metal cap, $1 / 3$ each, 3 for $2 / 9$. Ditto with solder tags to take heavy gauge wire, Wh ea.z 3 for $3 / 3$, take heavy gauge wire,
$1 / 4 O R G A N I T E$ long spindle 10.000 vol con
MOR MORGANITE long spindle 10.000 vol con. approx., Burndept, Varley, with station names, 4 assorted for $1 / 6$
BURNDEPT 4 -band dial, $8 \times 51 / 2$. s.w. on lower half of scale, $1 / 6$ each.
MICROPHONE capsules by Standard Teleponges, spindles, $5,0, C e n t r a l a b$ vc, less switch, INPUT strips, 2 in $\times 3 /$ in , $1 / 2$ meg, $3 / 9$ ea, with terminal screws, $3^{\prime} / 3^{2-w a y,}$ dozen: anchor or mounting strips, $2 / 3,3 / 3$ dozen; anchor or SPECIAI, strips, $2 / 3$ dozen, 5 -way.
0.0001×0.0001 five (ten condensers) mica cond. Iunts 0.001 ive (ten condensers) for $1 / 3$; ebonite bobbins, 5,000 ohms, $1 / 3$ ea. FRIE colour coderl resistances, 2 -watt type, $680,66,800,140,000,150,000,220,000$, YAXLEY $820,000,21 / 3$; Erie $3 \mathrm{w}, 680,1 / 3 \mathrm{ea}$. YAXLEY type low loss switches, single pole dLYDON and Plessey trimmers,
1/-: low value oddments, $2,1 /, 2,000 \mathrm{~mm}$, TWIN rubber flexible cable no
leads, etc (one cover) $1 / 3 \mathrm{vd}$, 3 w , for mains leads, etc. (one cover), $1 / 3$ yd, 3 yds $2 / 9$: pushbatk connecting wire, stranted, 2 colours, SERVICE kits. See November issue, Cod. Sount Labs., ritd. 40 South Molton Lane Bond St., London, W. Wo Tool out Mor Lane, bined valve tester and circuit analyser. $[3253$ CELESTION 55 energised 12 in Quality outputaker. Ferranti AF5; Haynes special or 12 volts at i itmp. - Reasonable offers to Row. or 12 volts at itmp.-Reasonable offers to Row
lanis. The Lanrels. Hawarden. Chester. [3180 SURPLUS stock and equipntent. new. stands and with transformer in metal table take battery. $£ 3 / 17 / 6$ each; Ediswan loudspeaking telcphone master units. f11/15; speakers for same, $52 / 6$ each: Philcophone
ditto with 2 speakers, $16 / 16$: Minlard ECP 30 ditto with 2 speakers, E16/16: Mallard ECR30 ray tube unit, a complete e/r tube energising unit withont amplifier or time base, but comB618 15-18watt amplifier, l2volt battery onerated, in leatherette case, complete with mike. $£ 28 / 19 / 8$; a.c. mains unit. $f 6 / 6$; Philips coils, Litz wound, in spun aluminium 2 -wave aerial. $3 / 6$ each. diagrams supplied; good stocks of B.V.A, valves at list prices; also the following used goods: 2 R.K. mains ener gised $101 /$ in speaker units, metal rectifiers, £6 Baker ditto. £3; 2 Ilacon 6 volt field horn units, 30watt type, $£ 3$ each; 2 Truvox p.m horn units, 5 -6watt. $\mathfrak{f} 4$ each: 1 B.T.H. needlo armature pick-up. old type but chromed and in good order, £2: Masteradio vibrator-pack 12 volts d.c. to 400 volts. 120 mA . in new condition but vibrators need attention or renewing. £8/10; all in genuine condition and c.p. against cash.-Gregory. Tnion St., Theddar. CHARGER kits, reciifiers, mains trans tifier, $2 v$ half amp with transformer, makes ideal trickle charger for 2 v cell. $13 / 6$. postage 7 d. ; instrument rectifiers for meters, brifge
 3d.: 18ans host $31,10 \mathrm{~mA}$. 50 dio prim, 200 v 250 v . sec. $350 \cdot 0.35080 \mathrm{~mA}$, 4 v 4at. it 2.1 massive transformer on 80-watt core, 27/6. postage 10d.: l.t. trinsformers, sulit Westing. house rectifier. prim. 230v, sec. 22 v , tapped at 10 p and $14 \mathrm{v}, 2 \mathrm{amps}, 26 / \%$ postage 10 d : metal rectifier. 6 V lamp, with transformer and ballast bulh for $2 \mathbf{v}$. 6v charger, 29/6. nost 10d.; ditto 1.5 amp , $34 / 6$; metal rectifier 6v 2amp. with transformer and ballast bulb for $2 \mathrm{v}, 6 \mathrm{v}$ charger, $42 / 6$. postage 10 d .; ditto 2.5a, 46/6; meial rectifier, 12 v 1amp, with transformer and ballast bulb for 2 v to 12 v charker. $37 / 6$, nost 10 d . ; ditto 1.5 amp, $45 /-$: metal rectifier, 12v 2.5a. with transformer and ballast bulb for $2 v$ to 12 v charger, $59 / 6$, post 10d.; Rothermel Senior bakelite crystal pickups 78/9. nost 9d.; ditto metal arm model S.12, £3/13/6. post 9d.; Rothermel deaf aid 4 minature crystal microphones, lapel fitting, 42/6; Rothermel Bullet microphones, head lamp shape, black crackle finish, a really good
crystal mike at a modest price, f3: moving coil microphones. heavy plated housing. most innosing ioh. List £6/6. offererl at $£ 5 / 10$. Tliampion. 43, Uplands Way, London, N. 24.

Armstrong SERVICE

We are doing our best to keep your pre-war Armstrong Receiver in a state of good repair until such times as we can resume manufacture and supply you with a post-war model.
In the meantime if you need our help address your enquiry

ARMSTRONG (Radio Service Dept.)
WARLTER8 ROAD, HOLLOWAY, LONDON, N. 7
'Phone : NORth $32 / 3$.

COVENTRY RADIO

COMPONENT SPECIALISTS SINCE 1925 WE SHOULD LIKE TO ADVERTISE OUR COMPLETE RANGE OF RADIO COMPONENTS IN THIS JOURNAL, BUT WE SHOULD NEED SEVERAL PAGES. AS AN ALTERNATIVE MAY WE SEND YOU OUR LATEST LIST SENT ON RECEIPT OF Id. STAMPED ENVELOPE.

COMPREHENSIVE STOCKS,
COMPLETE SATISFACTION
PROMPT SERVICE,
the COVENTRY co.
191, DUNSTABLE ROAD, LUTON.

\section*{RADIO SPARES
 MAINS TRANSFORMERS. Primaries 200/250 volts} | Secondaries |
| :--- |
| $2 \downarrow$ a., $32 / 6$. Type B $80-35 \mathrm{ma}, ~$ |

 6 a., C.T. 5 v. 3 a., $42 / 6$.
Type J.
Type J. 200 ms . Giviag 2 L.T.'s of 6.3 v. C.T. and 5 v for Rectifer, 500-0-500 v. Secondary H.T., $47 / 6$.
SPECLAL. Type K. As Type J, but with 4 v . heaters, $4 \% / 6$ Please note that owing to dimensions and weight of Type H. I. J and K . kindly add 2/6 for carriage and packing. SPEAKERS. Celestion Sin
SPEAKERS. Celestion 8in. P.M., with transformer, $29 / 6$.
loin., with transformer, $43 / 6$. Rola former, $20 / 6$; less trangformer 24 in. P.M., with trans FIELD COILS, with hum coil if 24/-
OUTPUT TRANSFORMERS. Class B and Q.P.P., $9 / 6$ Power, Pentode, Class B and Q.P.P., $11 /-$ Power Pentode. standard size, w/6. 20 ma . Pentode, Midget, $5 /-$
SMOOTHING CHOKES. 20 henries 120 ma
inductance. nickel core, $14 / 6$. henries 120 ma., consta:
DRIVER TRANSFORMERS. Class B, $8 / \boldsymbol{m}$. Bobbims only, $6 / 8$.
MAINS TRANSFORMER BOBBINS. Philco, Bush, E.M.I
LiNE CORD. 3 amp., 3-way, approximately 180 ohms per yard, $5 /-$
MULTI RATIO OUTPUT TRANSFORMER, 120 M.A. 15 WATTS, TAPPINGS FOR 6L6'S IN PUSH PULL PX'S IN PUSH PULL : LOW IMPEDANCE TRIODE LOW IMPEDANCE PENTODE, HIGH IMPEDANCE TRIODE. 37/6. COMPLETE INSTRUCTIONS WITH EACH UNIT.
Orders accepted by post only, and those of $10 /$ or less should Pe accomnanipd by cash. Please include postage with order

H. W. FIELD \& SON
 Colchester: Road, Harold Park, Essex.

PITMAN \star BOOKS

BASIC CALCULATIONS FOR RADIO, WIRELESS \& ELECTRICAL TRADES
By A. E. Druett, B.Sc. (Eng.) Lond, A.M.T.Mech.E. Applies to R.D.F. and Wireless Mechanics, Wireless Operators, and Electricians, Groups I and II. The syllabus for the proficiency examination is adequately covered, and fully worked solutions are included. 3 s . 6 d . net.

THERMIONIC VALVE CIRCUITS

By Emrys Williams. Incorporates the theory of the operation and design of thermionic valve circuits, and constitutes a convenient text-book dealing exclusively with the subject, suitable for unlversities, technical colleges, etc. Second Edition. 12 s .6 d . net.

WIRELESS TELEGRAPHY:

Notes for Students

Compiled by W. E. Crook. A book which has been used as a text-book for an operator's course with satisfactory results. The book is applicable to any kind
Third Edition. 7 m .6 d . net

WIRELESS TERMS EXPLAINED

By "Decibel." An invaluable guide to the technical terms used in Wireless. Second Edition. 3s. net.

D/F HANDBOOK FOR WIRELESS OPERATORS

By W. E. Crook. The author says: "The book will enable the reader to view any D/F station through the specialist's eye and to take up his duties with the minimum of delay to master local details." Second Edition. 3s. 6d. net.
Parker St., Kingsway, London, W.C. 2

MDIRSE CDDE TRAINING

For Beginners and Operators

IRREFUTABLE EVIDENGE

 of the value of the Candler System of Morse Code 24 extracts from students' letters" included with every opy of the Candier"BODK OF FACTS"
which will be sent you post free on request. This book gives full details of the JUNIOR Scientific Code Coursefor beginners. Teaches allit the necessary code funda-
mentals scientifically
ADVANCED High-speed Telegraphing for operators who want to increase their w.p.m. speed and improve their technique.
TELEGRAPH Touch Type-writing for speedy recording of messages and for general commercial uses.
Here is one example of the value of the Candler System of Morse Code training.
REMARKABLE PROGRESSIONS. "I suppose it seems very unusual to be sending you all the reports on Lessons 3 to 10 together in one letter. I have done this so that you may see the series of remarkable progressions I have made with each lesson. I had no knowledge of Code before taking the Candler Junior Course. Now I have a perfectly spaced sending speed of 26 w.p.m.,
and a receiving speed of 25 w.p.m. A few weeks and a receiving speed of 25 w.p.m. A few weeks
ago 1 obtained my P.M.G. Special Certificate, and I am going to sea very shortly as a 2nd Radio Officer."-Ref. No. 7925.-A.H.M.
Code Courses on Cash or Monthly Payment Terms, WRITE NOW FOR THE FREE "BOOK OF FACTS." (Room 55W), 121 Kingsway, London, W.C.2.
Candler System Co.. Denver, Colorado, U.S.A. (1244.)

B UY your components direct and save pounds; complete parts in stock to build acr super latest receiver, £8/19/6; cabinet $30 /$ - extra; comprehensible circuit separately, 1/6.-Buc cleuch Radio Manufacturers, 1 and 2, Melville
Terr., Edinburgh. $\mathbf{F}^{\text {OR }}$ sale, ofiers, new: Taylor meter, 83A: nains allwave oscillator; Taylor a.c. mains oscillator, 65 A ; electrolytic condensers, 8 mfd . 500 v wrkg., $7 / 6$ each; transformers, mains and ntervalve; write, stating requirements, s,a.e. selling up all stock.-G5'TN, 252, Locking lid. Weston-super-Mare.
LINE cord, 0.3amps, $55 / 60,2$ way $3 /-$. 3 -way Dubiliers yol. controls. long spindle, without switch, $5,000,100,000$. 1meg, 3/-: Hunt' micas, all capacitics, $41 . ; 0.01 .0 .012$ micas, 9d.; wander plugs, $21 /-\mathrm{gross}$; auto trans formers, 70 watts $18 / 6$. 100 watts $19 / 6$; sleeving from $1 / / \mathrm{mm}, 16 / 6$ up; insulating tape, $2 / 6 \mathrm{lb}$. wave "hange switches, $2 / 3$; all gauges enamed
wire; 7 in wooden baffles, $1 / 9:$ Litz wire in t/alb. reels; droppers, all types, from $2 /-$; large quantity of useful components...-Send 1d. for full list to Dept. W.W., Harrison and Co.. 9 Percy St. London. W.1.' Tel. Museum 0216. IENRY'S offer $6 v$ vibrators, 4-pin type for same, $12 / 6$; Westinghouse $H . T .10,200$, $21 /$ Celestion Amplinol valve $100 \mathrm{ma}, 21 /-\mathrm{C}$ Celestion Amphenol value holders. int. nctal and Mazda, 4- and 5 -pin English and U.X., $1 /$, or $10 /$ doz. i.f., transf 465, small can, $15 /$ pair; large type iron-
core, $12 / 6$ pair, T.C.C. block condenser pack, $4 \times 4 \times 2 \times 2 \times 2 \times 1 \times 0.5 \mathrm{mfd}, 450 \mathrm{~F} \quad \mathrm{~kg}, \quad 17 / 6$ mel., long wave coils with reac. complete cir ruit., $10 / 6 \mathrm{pr}$; ; med. wave. complete with ac/dc circuit, 6/6 pr. ; ceramic 5 -pole 2 -way switches. 4/6; 2-gang cond.. ceramic ins, $12 / 6$; stee rellulosed chassis, 4 holes drilled, $10 \times 41 / 2 \times 2$, $5 /-$; vol. controls, resistors and valves in row R1. Paddington, W.2. Pad. 2194 . [3218 $\mathbf{B}_{\text {A.thread screws, }}^{\text {ditto }}$ nuts, $2 / 6$ gross; \quad assorted gross screws and nuts, $2 / 6$; ditto brass washers 1/6 gross; fibre washers, $1 / 6$ gross; assorted solder tags, 2/-gross; assorted small evelets and ripets, $1 / 3$ gross; rubber-covered stranded copper wire, 1d. yarrity, $2^{1 / 2 d}$. yard; ideal for aerials, earths, etc.; tinned copper connecting wire, zoft. coil, 6d.; ditto, rubber covered, 10ft. 5.d.; finest quality resin-cored solder $1 /-;$ cotton-coovered copper instrument wire,
 silk-covered ditto, 2oz. reels, $24,26,28$ gauges $1 / 6 ; 30,32,34,36 \mathrm{~g}, 1 / 9 ; 42$ gauge double silk, $\boldsymbol{2} /$ /-; special 16 gauge double silk, 11 b zincite combination, complete on base, guar anteed efficient, $2 / 6$; reliable crystal with sil ver cat.swhisker. 6 d. ; reconditioned headphones complete, 4,000 ohms, 12/6; all postage extra Post Radio Supplies, 33, Bourne Gdns., E. 4 COULPHONE RADIO, New Longton, nr and P.V.A. valves at present manufactured mains transformers, interleaved impregnated windirgs; screened primaries, $350-0-350 \mathrm{v}$ $100 \mathrm{~mA}, 4 \mathrm{v} 6 \mathrm{~A}, 4 \mathrm{v} 21 / 2 \mathrm{~A}$, or $6.3 \mathrm{v} 3 \mathrm{~A}, 5 \mathrm{v} 2 \mathrm{~A}$ 28/6; bobbins only, windings as above, $15 / 6$ $425-0-725 \mathrm{v} 200 \mathrm{~mA}, 4 \mathrm{v} 8 \mathrm{~A}, 4 \mathrm{v} 4 \mathrm{~A}, 4 \mathrm{v} 4 \mathrm{~A}$
$52 / 6 ;$ snoothing chokes, $25 \mathrm{Hy} 200 \mathrm{~mA} .21 / 6$ speaker field coils, 2,000 ohms, $9 / 6$; speaker prm., less trans, 5 in $21 / 6,61 / 2$ in $22 / 6$, 8 in $24 / \%$ loin $35 / \%$ with transi, 8in $30 \% 10$ in $45 / \cdot$; 8in energised. 2,000 ohm, with transi
$32 / 6 ;$ output transi. power-pen, 40mA, $8 / 6$ push-yull power-pen, $80 \mathrm{~mA}, 18 / 6$; push pul extra II.D. $100 \mathrm{~mA}, 37 / 6$; Rolal push-pul! 15/6; mains dropper resistors, 800 ohims 0.3 A 2 varitaps, $5 / 6 ;$ push-back wire, 50 it $3 /-$,
looft. $5 / 6 ;$ tinned copper wire, $1 / 2 \mathrm{lb}, 2 / 3 ; 2 \mathrm{~mm}$ sleeving. 3 ; ; resin-cored solder, $1 \mathrm{~b} 4 / 6$; bias condensers, $50 \mathrm{mfd} 12 \mathrm{v} .2 /-; 12 \mathrm{mfd} 50 \mathrm{y}$ $2 /-; 4 \mathrm{mfil} 1,000 \mathrm{v}$ de working paper con $\begin{array}{llll}\text { densers, } & 12 / 6 ; & \text { tuning condensers } & \text { with } \\ \text { trimmers, } & 0.0005, & 2 \text {-gang } 11 / 6, ~ & 3 \text {-gang } \\ 13 / 6 ;\end{array}$ screened M. and L . wave coils, t.r.f., $6 / 6$ Parafted 1.f. trans, 4: 1, 6/6; quality p.-n l.f. transi, split secondaries. $2: 1,22 / 6 ;$ h.i
choke $1 / 9$; carbon resistors, 50 ohms to 5 megohms, $1 / 2 \mathrm{w} 6 \mathrm{~d}$. 1 w 9 d ; switch eleaner, $2 / 6$ bottle; vol. controls, less sw, 4/9; with sw 5/9; Pyrobit pencil blt electric soldering irons, $2 / 1$ grid clips, 10 d . doz.; valve-holders, Fig. and Amer., id per pin; smoothing iron elements, 450w, $2 / 3$; fire spirals. $750 \mathrm{w} 2 /-$ 1,000 w $2 / 6$; shaft couplers, 6 d ; 1 in knobs. 91: ingle-screened cable 10 d yd, all sizes tubulir ${ }^{\text {and mica condensers, limited quan }}$ tity, $31 / 2 \mathrm{in}$ dial, $0-1 \mathrm{~mA}$ m.c. millianmeters, tity, $31 / 2 \mathrm{in}$ dial, $0-1 \mathrm{~mA}$ m.c. milliammeters,
B.s. Ist grade, $70 /$; send s.a.e. for the best service list a a ailable; no c.o.d.; all order over (5/- post free, post 6d extra under 5/

बyIT RaDO Lmbed

4 NEW RADIO CONSTRUCTORS' KITS

1. A.C.3-v. $(+$ RECTIFIER)KIT.

 Short and Medium Waves.16.50, and
Crioute,
I. F. This set gives exceedingly good
periormance on shorr Waves. Price $\mathbf{G n S}$.
2. A.C. 3-v. (+ RECTIFIER) SHORT WAVE KIT, $12-100 \mathrm{~m}$. Without coil changing.
gircead turing on all bands.
Price $\mathbf{1 2}$ Gns.
3. BATTERY 3-v. KIT. Short and Medium Waves as No. 1. £8
4. BATTERY 3-v. KIT. Short Waves only 12-100 m. as No. 2.
£9
Port 1/1, plus $3 / 6$ packing (returnable) on each kit The above kits give gaaranteed Loudspeaker reception of Short Wave stations at programme Delivery from shoc

4-VALVE, 4-WATT GRAMOPHONE AMPLIFIER CHASSIS

Assembled on black Crackle-tinished chassis fitted with separate Tone Control, Volume Congramophone and extension speaker. Hum free, good quality reproduction. A.C. only. Input
$200 / 250$ v. size overall. $8 \times 6 \mathrm{~d} \times 7 \mathrm{tin}$. Reads and apeaker 10 Gins. Theoretical and practical Blue Prints of the above avrilable separately, $2 / 6$ pair.
A. \& H.F. TRANSFORMERS. M. and L. Small, size 2 if $\times 1$ in. $10 / 6$ pair.
A. \& H.F., with reaction, $10 / 6$ pair. MIDGET A. \& E.F. TRANSFORMERS, Med. only, $8 / 6$ pair. $1 \frac{t}{x}$ dia. Blue prints supplied with all coil SMALL 2-GANG CONDENSERS .0005, $14 / 6$. STANDARD 3-GANG Condensera, 0005, 13/6. Differential, $3 /-$ each. $000 \mathrm{~s}, 0005$ and MALNS TRANSFORMERS, 350-0-350, $4 \mathrm{~F}, 4 \mathrm{amp}$ shrouded, chassis mounting type, 35/-."Combined" English and International windings, 6.3v. 4 a.
5 v .2 a, , and $4 \mathrm{v} .4 \mathrm{a}, 4 \mathrm{y} .2 \mathrm{a}$. A.C. 230v., Ihput 5v. 2a, and 4v. 4a., 4v. 2a. A.C. used in mixed
$300-0-300 \mathrm{v}$, at 80 ma . Can be used valves circuit. Chassis mounting. Blue print supplied. $32 / 6$, jost 9 d .
input 10-0, 200, $220,240 \mathrm{v}$. Output $250-0-250$ MIDGET PARALLEL FEED TRANSFORMERS. FORMERS MIDGET INTERVALVE TRANSL.F. CHOKE VOLUME
VOLUME CONTROLS. $\quad 10,000,100.000$ ohms t, $t, 1$ and 2 meg. With switch, $6 / 6$ each. 5,000 4/- each. 1.000 ohms, 2 amp., 6/-. 700 ohms, 3 arnp. mi/-. 30 th fitted with two variable sliders and
feet. 10 w . wire-wound, $120,500,7,000,2,000$ ohms. $2 / 6$ eac
CHASSIS.
$10 \frac{1}{2} \times 8 \times 2$ in. Undrilled steel, sprayed silver, Drilled for 3 or 4 valyes, black crackle, $8 \times 6 \times 2 \times 2$ each. TOGGLE SWITCEES. Miniature On-Off, घingle pole, 2/6. 3 core, 3 amp. 60 ohins per it
 (0xoonwr Phent Hol bom 4631

SEXTON'S
 RADIO SALES, SERVICE \& SATISFACTION

THE DORSET BATTERY THREE

Build your own three-valve battery receiver at half the cost. The Dorset Battery Three can be constructed at home without any previous knowledge of radio. Explicit instructions are given including, schematic circuit, constructional and full size wiring diagrams, chassis drilling template, components parts list showing correct specified values with average prices for components, point-topoint assembly instructions and diagram for Tone control and Pick-up. Complete Instructions, 3/6, posrage paid.
AMERICAN RADIO VALVES, types only as shown. 6F6GT, 6K7GT, 6K8GT, 6A8GT, 6Q7GT, 6L7G, 6C6G, 6G5G, IH5GT, IA7GT, IC5GT, $12 \mathrm{~S} / 7 \mathrm{GT}, 12 \mathrm{SF} 5 \mathrm{GT}$, I2Q7GT, 12 A 8 GT $12 \mathrm{~J} 5 \mathrm{GT}, 75 \mathrm{G}, 6 \mathrm{~V} 6 \mathrm{G}, 42 \mathrm{G}, 83 \mathrm{G}, 43 \mathrm{G}, 31 \mathrm{G}$, $36 \mathrm{G}, 25 \mathrm{Z} 6 \mathrm{GT}, 5 \mathrm{Y} 3 \mathrm{GT}, 12 \mathrm{Z} 3 \mathrm{G}, 25 \mathrm{Z} 5 \mathrm{G}$, at Board of Trade Controlled prices.
ELECTRIC SMOOTHING IRONS. $200 / 220$ volt and $230 / 250$ volts for $A C / D C$ mains, $3-3 \frac{1}{2}$ lbs. war-time finish, with connector guard and rest, complete with 6 ft . 25avy 3 -core flex and earthed iron connector. 25/- each. Postage paid.
LOUDSPEAKERS. "Rola" 5in. P.M.; with transformer, $29 / 6$ each; 8 in. " Rola" "Celestion" 8 in . with trans., $29 / 6$ each. Goodman's $3 \frac{1}{2} \mathrm{in}$., with trans., 296 each. "Celestion ". Mains Energised 10in. 2,100 ohms Field, $42 / 6$ each. Postage paid.
Terms:-Cash with order only, carriage paid on all orders value $f 1$ and over. Send Id. stamp and S.A.E. for latest list of Radio and Electrica! accessories.
J. E. ERXTON \& CO. LTD.

164, Gray's Inn Road, London, W.C.I.
Tel. : Terminus $1304 \& 4842$.

YOU
 can become
 a first-class IRADIO ENGINEER

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE 2 The Mall, Ealing, W. 5

(Post in unsealed envelope, 1d. stamp.)
Please send me free details of your HomeStudy Mathematics and Radio Courses.

NAME

ADDRESS
W.W.34
$\mathbf{R}^{\text {ADIO spares.-Line córd, } 0.3 a \mathrm{mp} \text {. }}$ approx. ber yd per it, 3 -way $4 / 11$ per yd., 2 -way 6/6 per pair: 2 -gang condensers, midget coils, $6 / 6$ per pair, \quad v. controls (all values), with switch $4 / 9$ each, less switch $3 / 9$ each; Solon
soldering irous (pencil bit) soldering irons (pencil bit), $13 / 6$ each; biggest plus purchase tax, let us have your eng prices, plus purchase tax, let us have your enquiries; Rothermel (crystal) pick-ups, $£ 3 / 14$ and £3/18/9; Celestion p.m. speakers, 6/2in multi ratio trans. $\begin{aligned} & \text { £1/8/6, } 8 \mathrm{in} \\ & \text { condensers. } \\ & \text { wifl }\end{aligned}$ trans. $£ 1 / 7 / 6$; condensers, $8 \mathrm{mfl}, 4 \mathrm{mfd}, 0.01$, etc., etc.; mains transfcrmers, 4 v and 6 v . $£ 1 / 7 / 6$; valve holders, all types in stock; portable accumuaccumulators, $45 \mathrm{amp}, 17 / 6$ and $18 / 6$; glass accumulators, 45amp, 14/6; resistances and condensers, all types in stock; strictly cash with order.-Matt Radio Service, 152, RichMond Rd., Kingston-on-Thames. (Kin. 4881.) SOUTHERN RADIO'S wireless bargains.
' Radio Valve Manual," equivalent and alterRatio valve Manual, Bequivalent and alternative American and "British types, with all
necessary data, $3 / 6 ;$ Radio Circuits," fully illustrated, receivers, test equipment, etc.,
$2 /-;$ "Services Signalling Manual," Morse, International code, etc., $1 /-;$ Amplitiers, fully descriptive circuits, 2/-; "Radio Manual," formulas, tables, colour code, etc., 1/-; Telsen large drives, complete boxed (type W184), 2/6; reaction conds., $0.0001,0.00015$, $1 / 9$; 2 mfd conds., P.O. upright paper type. used but fully guaranteed, high working volt age, 2/6; Ace P.O. mikes, complete with trans. ready for use with any receiver, 7/6; Multicon mica conds., 28 capacities in one, from 0.0001 upwards, $4 /-;$ crystal detectors, complete, 2/6; Dr. Cecil crystals, 6d, with catswhisker, 9d.; push-back wire, insulated, $25 y d s$ for $5 /-$; in sulated sleeving, assorted colours, yd lengths $3 / 6$ doz; single screened wire, doz yds, $10 /$ twin screened wire, $17 /$. doz yds; metal cased conds., $0.1+0.1+0.1$, high working voltage, $2 / 6$; power rheostats, Cutler-Harmer, 30 ohms, 4/6;
push-button switches, 3 -way 4/, 8 way 6/- (ail complete with knobs); escutcheons for 8 -way p.b. switches, $1 / 6$; p.b. knobs, $6 \mathrm{~d} . \mathrm{i}$ pointer knobs (black or brown), special instrument lype for $1 / 4 \mathrm{in}$ spindles, $1 /-;$ Erie resistances, brand new, wire ends, $1 / 4,1 / 2,1$ and 2 w , mostly low values, but a very useful selection, 100 for $30 /$; copper earth rods, $18 \mathrm{in}, 2 / 6$; heavy duly L.F. chokes, 30 hys, $100 \mathrm{ma}, 250$ ohms 14/- 500 ohms $16 /-1,000$ ohms $17 / 6$; w have for disposal a large quantity of brand new assd. screws, sample lib weight, $5 /-$; soldering tags, including spade ends, $6 /-\mathrm{gr}$; coil
formers, ceramic and paxolin, $7 / 6$ per doz; formers, ceramic and paxolin, $7 / 6$ per doz; special bargain offer of 50 assd. conds., 20 tubulars, 20 mica conds., 8 silver mica conds. and 2 electrolytic conds., all brand new, $47 / 6$ the parcel of 50; all types of Pyrobit soldering irons available from stock, chassis mounting valve holders, English and American types, all sizes, $1 /$ - ea.; hundreds more bargains-Southern Radio Supply Co., 46, Lisle St.
London, W.C. Gerrard 6653. London, W.C. Gerrard 6653.
COIL, winder wanted, good price
paid; $\mathbf{W}^{\text {TD., Avo }} 7$, auy condition, Working order - not essential; details, price.--Box 3259. 6 SC7 R.C.A. inetal valves, 2 required.- JohnWton. 31, Wilmington Way, Brighton, 6 . W'd., Universal Avominor or Avo mod. 40 ; W ANTED, tuning unit for W.W. August. or without 1939 Six Station Quality recelver. ${ }^{\text {with }}$
$[3185$ $\stackrel{\text { or }}{ }{ }^{\text {Without }}$ ANTED, Communication ${ }^{\text {valves. }}$ receiver; state make, price and condition-Longhorn,
Westerhope, Newcastle-on-Tyne.
[3202 $\mathbf{W}^{\text {TD }}$, high vacuum pump. small model. oil Parkside Arercury type, required.-Preece, 242, \mathbf{W}^{E} offer cash for good modern comminnicaRadio. 44 , Widmore Rd., Bromley. TAYLOR 45A5 valve tester, new, 1944, un Everitt, Knowle IIall, Birmingham. A VO universal test meter model 7 wanted; Mayfield, 169 , Arbroath Rd., Dundee. $\quad[3194$ MULEARD test board and oscillator, latest M model, ac, in perfect condition; also Avo minor Uni (condition immaterial).- Box 3276.
 Copy.-F/It. Fiveritt, Knowle Hall, B'ham. WD. Milne gas-driven (thermo-elec. radio
receiver, also batt. charger: state price, cond. Frater. Nore Cott., Portishead, Bristol.
\mathbf{N} EW boxed valves kanted, any quantit: NEW boxed valves wanted, any quantity, bourht.-J. Bull and Sons, 246, High St.. Warlesden. N.W. 10 . W ANTED, good make gram. recording direct drive tracking gear or parts, including direct drive tracking gear.-Pearson, 67. Cliffe
St., Keighley. Yorks.
[3251

If there is anything you need made of WOOD
 WE CAN MAKE IT !
 Wholesale only
 HIRSH \& HYAMS LTD., Cabinet Monufacturers
 93 Hackney Rd, London, E. 2 Bish 4012
 Specialists in AMPLIFIER and EXTENSION SPEAKER CABINETS
 Government Contraota and Sub-contraots andertaizen

 Shows the casy way to secure A.M.I.Mech.E., A.M.Brit.I.R.E., A.M.I.E.E., City and Guilds, etc.

WE GUARANTEE

 "NO PASS-NO FEE."Details are given of over 150 Diploma Courses in all branches of Civil, Mech., Elec., Motor., Aero., Radio, Television and Production Engineering, Tracing, Building, Govt. Employment, R.A.F.
Maths., Matriculation, etc. Naths., Matriculation, l'hink of the future and send
for your copy at once-FREE. B.I.E.T., 387, SHAKESPEARE HOUSE, STRATFORD PLACE, LONDON, W.1.

- AMEMICAN MIDGETS HANDEOOK

Desorlbing with many ciroult diarrama the pecularitio of amall Aichericall (Aldget) Radios. Kispealilly writion for service men, mont likely faulte and their ramedies with binta on wartinue gulatitutea for unobtainable parte are alf given. The valie data seotian gives buees atid workin
la midgete.

Price 2/6
from booksellers or by post, $1 / \mathrm{l}$.
V.E.S. (W),

Radio House, Melthorne Drive, Ruislip, Madx.

WARD
ROTARY ONVERTERS
Petrol Electric Generating Plants, H.T. Generators, D.C. Motors, Frequency Changers, etc., up to 25 K.V.A.
CHAS. FE WARD
37, White post lane, hagkney wick, e. 9
'Phone: Amherst 1393

HEREY'S
 (SHORT WAVE) LTD.

In addition to the usual radio parts, we carry a
RADIO AND ELECTRONIC EQUIPMENT
 Meters, $0 / 5$ ma, $57 / 6 ; 0 /$, $5 / 6$. Meico 5 . Amplities,
$£ 16$ 10s. 0d. Rothermel Crytal Mikehead, £4 $15 s$. $£ 16$ 10s. Od. Rothermel Crystal Mikehead, £4 $15 s$.
Pickups, $73 / 6,78 / 9$. Cermmic $\$. W$.
 $.0001,4 / 6 ; .00016,4 / 9 ; 1 \bar{m}$ minf., $3 / 6 ; 25$ mrnf.,
$3 / 9 ; 40$ mmi., $4 / 6 ; 75$ innf. milget, $6 /-. \quad$ Precision

 escutcheon and glass, 8/6. "I'" Ooils, 2/3. $2 / 6$.
I.F.'s, 7/6. Metal c'binets with hinged Hd, 2anel ind chassis, $39 / 6,63$-. Jacks and Plugs, 26 ench S.W. 1I.F. Chokes, 2/6. All-wave 2.5 ma, $3 / 6$. Togqle and Rotary switches, Ceramle Valve-bases, Starul-offs, Feed Throughs, Formers. Radio Manuals. Send II

25, HIEH HOLBORN, LONDON, W.C. 1 (Te1.: Holborn 6231.)

VALVES

We can supply either the exact valve or suitable replacement for almost any type.
Please order C.O.D. Stamp with enquiries, please. B.O.T. Retail Prices.

 $12 / 10$ A.C. TYPES. 2D4A, 6/9; $41 \mathrm{MP}, 354 V, A C / H L$. MIF4, MLLA, $9 / 2$, DWQ, AZZ31, DW4-500, TW4-R50,

 AC/Yen, ACt/Pen, AC5/Pen, KT41, KTZ63, MKT4, MsPenb, MVSPen, M,VBPenB, PenA4, PenfVA, SP4,
VMP4t, VP4, VP4B, $12 / 10$; AC/TH1, AO/T1, PC4,

30/5. Cy1, $1 \mathrm{D} 5, \mathrm{U} 31$, "50. TRIC, ER3C, U4020, $11 /-$;

 TP'23, T' $26, ~ V]^{\prime} 41, ~ V P^{\prime} 13, ' 12 / 10 ;$ AC/TP, '1H41 TH233, 14 ; AC I Perid , rentDD conversion,
 ETYPES. ELC3, 1EBC33, 11/7: CLA, CL33, EFS, FAP, EL3, JLA3, 1210 ; CCH35, ECH3, ECHB3,

 $25 L 6,25 \mathrm{Y} 5,25 \% 5$ conversion, 25ZA, t2, iz con
AMERICAN. $024,1 \mathrm{~A} 4.1 \mathrm{~B} 4,1 \mathrm{C} 5.1115,2 \mathrm{~A}, 2 \mathrm{~B} 7$

 $57,71 A, 75,76,79,81,82,85,89$,
PCl Pen 41.
$\begin{array}{llll}\text { TUNGSRAM. } & \text { DD13, } 6 / 9 ; & 6 B 8, ~ M 44105, ~ 14 /-~\end{array}$

VALVES \& ADAPTORS In whe cases where we cannot supply the exact valy
of equivalent, we can get your set poing with a valv and adaptor, the additional cost being $4 / 6$.

SPARES
TESTOSCOPE, the vest-pocket instrament for tracing faults, enables 20 tests AC/DC, 376. FLIK-O-DISK volts, ohmes and watts calculator, 6/6. LINE CORD, quality, 4/9 per yd.; 2 core, $3 / 11$ per yd. MAINS TRANSFORMER. 4 volt heaters, 3 y/6. VALVE EQUIVALENT CHARTS. 17 post free. BOOKLET
ON AMERICAN MIDGETS, $2 / 7$.
ELECTRIC ON AMERICAN MIDGETS, 2/7.
SOLDERING IRON (state voltage), 13/6.

J. BULL \&E SONS
 (Dept. W.W.)

246, HIGH ST., HARLESDEN, N.W. 10

W anteD, Taylor 65A or similar all-wave St. Cross scillator in cond condition - James, St. Cross, Salisbury Rd., I arnborough, Mants.
ThXCH. Magnavox 66 and B. A.H. universal WXCH, Magnavox 66 and B. A'H. universal playback type-4, Victoria Bldgs., Leicester. WANTED, Avometer 7 or 40 ; exchange Fer Wright, The Ridige, Copmanthorpe, nr. York. WTD. privately, elect. gram. motor, any type also 8 mfl condensers.- Write details, etc. Providence Place, Downley, Bucks. [3234
\mathbf{U} TD. Avo valve tester, good condition.W Finl Avo valve tester, good condition. lifant, L. d., High St., Rochester, Kent. [3244 W T'D. Burd television receiver, model T. 24 Bentley, 18, Widmore Rd., Ifromley, Kent WTH., Goodmans twin cone speaker or Carter, 60a, Hampton IRd., Sollh ohort, Lield A MERICAN Metal 6K7, 6L7, 6J7, 6H6 ondition tested. Mcsurdo Super, new or Brooklands Rise, Jondon. N.W. 11
IHARTLEY-TURNER duodes, energised type HI only, preferably 2,500 ohms, field coil approx.-H. J. Leak and Co., Lta, 470, UX bridge Hoad, W. 12 Shepherds Bush 5626. UIRGEVILY required for priority work stiaight and waye winders, any good make, hand or motor-driven; immediate inspection.Box $3265 . \quad[3206$ WE buy all types of nsed radiograms, radios, motors, pick-ups, all radis and electrical accesmotors, pick-ups, all radid and elect arth.-T'el. Eust. 1966. or (ier. 4447. University Rarlio. Ltd., 238, Euston Ru.. N. W. VYTD., back issues $:$ W'ireless Engineer" prior Mar, 1936, May, 41, all 42; "Llec-
trical Cammuntidions,", Jan, 34 , Apri!, 35 , Jan. '38; "Phillips Terhaical Review" and Ghilips Transmiting News, duy date. Grote lieber,
ton, Illinois, U.S.A.

REPAIRS AND SERVICE

24-HOUR service, 6 months guarantee, outputs, $4 /-;$ i.f. transformer, $3 / \cdot ;$ all types outputs, $4 /-;$ i.f. transformer, $3 / \cdot ;$ all types
of new equipment supplied to specification.Majestic Winding Co., 180, Windham Rd., Mournemouth.
[2764

SERVICE with a Smile."-Repairers of all types of British and American receivers: coil rewinds; American valves, spares, line cords.-F.R.I., Litd., 22, Howland St., W.1. Museum 5675 .
MAINS transformers service, repairs, re 11 winds, or construction to specification of any type, competitive prices and prompt ser-vice.-Sturdy Electric Co., Ltd., Dipton, NewA CCURATE radio rewinds, maing transA formers, fields, op. transformers, etc., Services, 297-299, High St., Croydon. [2882 REPAILS and rewinds, to transformers, 1 motors, converters, hair dryers, electric shavers, lacuum cleaner motors, etc., transormers and efficient service.-Valradio, 57, Fortress P EWINDS, N.W. 5 Gulliver 5165 . 3112 B EWINDS mains transformers, field coils and ten days' delivery; new transformers mannfac ten days delivery; new transformers mannfac politan Radio Service, 1021, Finchley Rd. politan Radio Service, 1021, Finchley Rd.
Golders Green, Iondon, N. W.i].
E2603
EGALLIER'G, Lid.- Gervice with a Golders Green, London, N. W. 11.
EGALLIRR'G, Ltd.-: Gervice
 receiver serviced, let American specialists do the job; first-class workmanship only; specialthe job; first-class workmanship only, specialrola devald, Emerson, Ferguson Garod, west Majestic Pilot Philco Sparton Midalso any British set. Remember, for 15 years we have handled as distributors American receivers; this is selfexplantory; s.a.e. Wifh Court, London W2 2 La., Westborne MISCELLANEOU8
$\mathbb{R}^{\text {UBBER }}$ stamps.-V. E. S., Radio Honse, TIME recorders.-Write for particulars. 3209 1 Gledhill-Brook Time Recorders, Ltd., 84 , Empire Works, Huddersfield. [2419 WHEL-KNOWN South African firm offers manufacturers of domestic appliances and manufacturers of domestic apphances an GIR IAN FRASER wants the help of a pro a keen bridge player to design and make an apparatus to enable a man who has Iost his apparatus to enable a man who has lost his Dunstan's will par for this work. Write to Sir Ian Fraser, 9, Park Crescent, W.1. [3240

ELECTRADIX

BUTTON MICROPHONES
provide interesting experiments. For making outside listeners, soand transmission, etc. These ex-G.P.O. Voice Units are under lin. diameter. with mica diaphragm, etc. Only 2/6. Diagram and postage, 6d. High ratio mike transformer, 4/6. RELIABLE CRYSTAL SETS. The Wall Nut Crystal Recciver is a first-class valveless receiver for table or wall. Tapped A.T.l. tuning condenser. Polished G.P.O. walnut case, 42/-. The B.B.C. Blackbird is an excellent set on porcelain base with steel cover, $39 / 6$. The Sherman Tank has the same tuning but novel steel cover, 45/-. Few only Mark 11 Het., converted ex-W/D wavemeters with 2 detectors, $10 \times 7 \times 6$ in.. $55 /$. Leaflet and postage, $1 /-$ H.R. Head phones, 17/6.

FUME EXTRACTOR AIR PURIFIERS, OR BLOWER FILTERS, 25 cub. ft. approx., with large filter chamber, all steel, $15 \frac{1}{2} \mathrm{in} . \times 20 \frac{1}{2} \mathrm{in} . x$ IAin., with intake down shaft. Geared hand drive or I/6thh.p. motor. Suit laboratory or works.
\rightarrow INVISIBLE RAY CONTROL. Raycraft set with selenium bridge, 10,000 ohm tele-type Relay, fittings and booklet, $42 /$ "FOTO" COPY CABINET for prints, blue, white or photostats up co $24 i n$. x lin. horizonal printing on glass plate top. Steel case $2 f \mathrm{t}$. 3in. x Ift. 7in. $\times 2 \mathrm{ft}$. 8 in . high, with pad lid. Fitted 8 lamp holders, dimmer slide res. and time switch. Bargain, $£ 5.17 .6$.
SURVEYOR'S OUTFIT for post-war planning. Theodolite by Watts with tripod, 14 ft . Telescopic Staff, eight marking poles and surveyor's chain. All in new condition, $£ 45$.
TEST SETS. Triplet Tester AC/DC, 3 meters, A.C. 5 ranges, 10 to 1,000 volts; D.C. 5 ranges ditto. 4 ranges m.a. ohms to megohms, $£ 14.10 .0$ Omnisection Valve Tester AC/DC, 18 ranges, 8 valve sockets, one meter. Ferranti Test Set, six ranges, 75 millivolts, 3 volts and 30 volts. 3 amps., 30 amps., 600 amps., with separate shunts for D.C tests, $f 18.10 .0$. Pye Signal Generator, " Trimeasy medium and long wave. One only, $f 12$. Impedance matching Test Set, one meter, by Standard Telephone Co., $£ 7.10 .0$.
 L.R. BRIDGES, 05 to RES. BOXES, as illus. 10 to 4,000 ohms and 20 to 8,000 ohms. MIRROR GALVOS., reflecting sus pension, by Sullivan and Tinsley, with scales. SIEMENS High Speed Relays range of small relays. G.P.O. vertical circuit test Galvos., 35/. A few Bridge Meggers with decade 0,000 ohmpres. boxes.
AUTO SWITCHES, magnetic trip thermal delay, 10 amps., double or triple pole, 25/-. 250 amps., $£ 4$. Battery auto cut-outs, 8 amps., 6 volts or 12 volts, Lucas, 10/6. Contactors and other autos quoted for.
SWITCHES. G.P.O. Lab. Switches, D.P., fine job, up to 10 amps. reversing, 4 in . base, 7/6. Knife A and E type, single pole C.O., I/6. Double pole On-Off, 1/9. Double pole C.O., $2 / 6.100 \mathrm{amp}$ S.P. with fuses, $22 / 6$. 200 amps., $40 / \mathrm{m} .5 \mathrm{amp}$ S.P. with fuses, 22/6. 200 amps., 40/:. 5 amp
ironclad tumbler, 2/9. Linked tumbler, 5 amps. ironclad tumbler, 2/9. Linked tumbler, 5 amps.
2/6. 10 amps., 3/2. Multi-contact R.I. 7-stud 5 amp. on ebonite panel, teak box base, $4 \frac{1}{2} \mathrm{in}$. x $4 \frac{1}{2}$ in., $7 / 6$. Lucas 6 -way lever handles in line with box back, 3/\%. Ditto, 8-way, 3/9. 6-way push button A.M., 2/9. Rotary Hart snap switches, 2way or On-Off, 10 amps., 4/-; 15 amps., 5/-.
MOTOR PU'MPS. We can give immediate delivery of the famous Stuart Turner 12 -volt D.C. motor pumps; 120 galls. per hour, 84, . Same type but for A.C. mains, $136 / \mathrm{F}$. Pumps only : R type twin-piston rotary for $\frac{1}{4}$ h.p. motor drive, $£ 3.5 .0$. Aquarium aerators, $£ 5$.

Please include postage for mail orders.

ELECTRADIX RADIOS
214, Queenstown Road, Battersea, London, S.W.a

C
CHASSIS trans. shrouds, clips and many other accurate and inexpensive. Details from A.A ools. 197 w , Whiteacre Rd. Ashton-u. Lyne D^{1} URBAN I'RABING ES'1A'l'E.-Fimm in
tending to manuacture in South Africa tending to manufacture in South Africa lare invited to obtain particulars of sites hay

MANUFACTURERS!!! - Radio wholesaler wishes to increase regular stock lines by the addition of new types of radio products.-
Will manufacturers please send full particuWill manuacturers please send full particu.
lars to Box 3209 . 3025

 \qquad | $[3025$ |
| :---: |
| your | guitar to an electric model by making one of my high-efliciency electro-magnetic

units; complete construclional cietails. with blue prints, of three tested and guaranteed designs, $5 /-\mathrm{I}$. Ormond Sparks (W), 9, Phoe-
beut Rd. Bnockler, London, SE.4.
[3216 bell Kdi, Brockley, London, S.E.4.
GYNCILRONOUS Moiors, Sangamo, $200-250$ S volts a.c., 50 c . self starting, filted reduction gears, ideal mosements for time switches, electric clocks, etc., rotor speed 200 r.p.ta. final speed 1 rev. 12 minites approx.. coll-
sumption $21 / 2$ wattis, size $21 / 8 \times 21 / 8 \times 17 / 8,22 / 6$;
 15 ann mercury switches, enclosed bakelite
$2^{1 / 2 i n} \times \frac{3 / 4}{2}$, fitted swicel sadfle, conertor block, etc.. $5 / 6$ each; electro magnets, $200-$ 250 v. a.c., resistance 300 ohms, $1 \overline{4}, \mathrm{in} \times 11 / 2 \mathrm{in}$, 3/6 each; wirewound non-inductive resist. ances, 2 -watts, ideal for meter shunts, resistance boxes, etc., $2 \frac{1 / 2}{2}$ accuracy, wound on following ratings, $25,50,100,200,400,600$, 1,000 and 2.000 ohms, $5 / 6$ per lot, postage paid; quantities available; rev. counters, ez zero on completion $3 / 6$ each; projection lenses, 1 in focus, ideal for 9.5 or 16 mm films. somed heads, etr., oxidised mounts, $11 / 4 \mathrm{in}$ long. 9/16in diameter, $5 /-$ each; terms cash with Onford St., W.C.1. Tel. Mus. $9594 .{ }^{[3254}$ TUITION
I EARN Morse code the Candler way--See A DIO training.-P.M.G. exams. and I.E.E. Coll R ADIO Engineering,-Television and WireR less Telegraphy, comprehensive postal courses of insirucrion.-Appy British Scho. of Telegraphy. Ltd. 1906. Also instruction ait srhool in wireless for H.M. Merchant Navy

and H.A.F. W IRELESS Training, marine radio officers, prospectus. -The North-Eastern School of Wireless. 69. Oshorne Rd.. Newastle-on-Tyne. Estab. 1911. T'el. Jesmond 1356.150 L $\mathrm{ppi-}$ | cal P.M.G. | technical questions, |
| :--- | :--- |
| tion any 20. $£ 1 / 1$. | correc- |
| $[3062$ | |

ENGineering Opportunities "' - free A.M.I.Mech.E., A.M.I.E.E., and all branches of engincering and buidding: full of advice for expert or novice: write for free coply and make $387 \mathrm{~B})$, 17. Straiford Place. Tondon. W. 1. A pospal, training in electrical engineerpondence tuition by highly qualified engineers pondence tuition by highly qualified engineers with wide teaching and techucal experience. for recognised examinations. Pre-service fraining specially arranged.-G. B./ 18, Springfiell
 ${ }^{\prime}{ }^{\mathbf{H E}}{ }^{\mathrm{HE}}$ Tractical Rary Board of the Institute able home study rourses covering femenlaboratory tuition in tadio arid television laboratory tuition in tadio afid eelevision engineering; the Lext is smitable coaching matter for I.PR.E.itionary fees-at ne-war rates-are moderate. The Syllabus of Instructional Text mav he obtained nost free from the Secretary. Bush House. Walton Avenue,
Henley-on-Thames, Oxon. Wirelesituations vacant
W ineless telegraphy.--Instructor wanted Scotland; must hacintesh Wireless Colleges. cate and preferably have teaching experience -Reply in confadence with full particularince. salary expected 40, Windsor Street, Dundee. [3189 HEAD foreman requirea for development 1. and semi-production of electronic tubes; applicants must be fully conversant with the manufacture and processing of transmitting tubes.-Apply, giving full details of experi-
ence. etc., to Box 3240 .

PHOTO-ELECTRIC CELLS

$\mathrm{Se} / \mathrm{Te}$ on gold-alloy, super-sensitive to

 light, gas-filled, permanent, operate relay direct or with Valve Amplifier, perfect reproduction of Speech and Music from sound track of films; large tube 3 in. from glass top to valve pin base, lin. diam., 38/-: medium size $2 \mathfrak{l} \mathrm{in}$. from top to valve pin base,登in. diam., 35/-; small tube 2 in . from top to terminal base, 4 in. diam., $30 /$; operate on $40-100$ voles, connections blue print free PRECISION OPTICAL SYSTEM producing fine line of light from any car headlight bulb, for scanning film sound track direct into Photo-cell, metal tube $2 \frac{1}{2}$ long, Hin. diam., 吾in, focus, $58 /$CEFA INSTRUMENTS, 38a, York street, TWICKENHAM, Middx. POPesgrove 6597

R. K Gumos

are the monufacturers of

THE MICROTIMER

—an instrument for accurate measurement of short time intervals ranging from one millisecond to one second-and all other types of electrical apparatus. Enquiries welcomed

THE AIRPORT, PORTSMOUTH
Telephone: 74874

PAPER CONDENSERS

Mctal cased, $4 \frac{1}{2} \times 2$ in. $\times \frac{3}{3}$ in., tag lerminals

Unused and in perfect condition $4 / 5000$ offered in one lot at low price GENERAL TRADE CLEARINGS LTD. Regional House. 21/41, Wellington Road London, N.W. 8

The illustration shows mechanism of synchronous Time Delay Relay PRL. Wide time range and easily resettable. Large selection of other Relays and Process Timers.

Ask for Leaflet 97/WW

L O N D E X • L T D

0
RADIO TELEGRABYI INSPECIORS required for the Nigerian (iowerument Yosts and 'Telegraph Department for whe cour of 12 to 24 months in the inst urstane. for niarried inen between $£ 36$ and $£ 156$ a year according to number of children Free quarters according to number oi chindren. Free quarters athd passages. Duties of the post are those of a. constrnction foreman engaged on the instalation of radio diffusion or relaying systems, ncluding fitting central receiving stations with and subscribers' lines and apparatus.
CANDID ATES shonld preferably have had ex perience with a company operating radio perien sound practical knowledge of radiō reception sound practical knowledge of radio reception in undersround \& overhead distribution. WRITTLN applications (no intreviews), giving Writrin applications no intreviews) giving (2) date of birih, (3) industrial training :and experience, (4) name and afldress of present employers, (5) delails of present work, sloould he sent ti the secretary, Overseas Manpower he sent to the secretary Overseas Manpower National service, York Touse, Kingsway, Kondon. W.C.2. Applications not acknowledged. MAXABER required for high-class radio M and electrical retail establishment. must se capable of taking full control, permanent bosition, with prospects; Becis disirict.
stating full details of experience, box 3261 .
$\mathbf{W}^{\text {IRELESS }}$ operators urgently required for W civilian work of national importance in connection with North Atlantic Air Services must have first-class P.M.G. certificate and ex perience of h.f., d.f. work-Box 3254. [31.74 $\mathbb{R}^{\text {ADIO-We require two men with goon }}$ en our showrooms; also two juniors and oys; good opportunities; permanency.-Write in first instance, stating age, experience and salary required, to H. R. S., Berry's (Short Wavel, Itd., 25. High Holborn. London, W.C. DOST-WAR plans--Radio manulacturer will Peserve valuable agency in certinn areas or ex-Servicemen and give every assidirst. in slance write, giving full details of your prear business. etc.. in confidence. to Box Z. /o Victor Stewart and Co., Chartered Accountants, 82. Vicioria St., London, S.W.1. $\mathbb{R}^{\text {ADIO component manufacturers with im- }}$ war programme require the services of a technical representative to maintain contact with leading set manufacturers and principal cuseamers serevious experience in this field and alio binole essential-Full details of experience, age, salary required, to Box 3260 . IARGE electrical engineering works in the LARGE electrica engmeering requires radio development engineers for their laboratory, B.Sc. (Hons.) physics or chemistry or equivalent standard: physics or chemistry or equivalent standardi fications and sxperience, fron $£ 375$ to $£ 600$ ca. ipplications, piving full details of train ing, experience and salary required, are inng, experience and samisy required, are
[3173

SITUATIONS WANTED

F Lengineer (Ph.D.), specialist in tele-coms. \mathbb{E} 1.A., electronic instr. offers services as EGHNICAL TRAINING
A.M.I.E.E., City and Guilds, etc., on No For full details of modern courses in all hranehes of electrical technology sen.-B.T.F.T Dept. 388 A) 17, Stratford Place, W.1. GREAT possibilities exist for technically Or qualified engineers, key men in wartime and aftwar IGB take a recognised engi courses or
 IIGB. students have passed 25 FIRS' I.C.B. PLACES and hundreds of passes. Write to day for ". The Engineer's Guide to Success " free-containing the worlds widest choice in cluding aeronautical, mechanical, electrioal, THE TESE Chemical, etc. GREAT BRITAIN, 82, Temple Bar House GREAT BRITAIN, 82, Temple Bar House,
London, E.C.4. BOOKS, INSTRUCTIONS, ETC.
W EBB'S radio map of the world locates nost 6d. in on linen, $10 / 6$, nost free. - webb; Radio, 14, Soho St., W.1. Gerrard 2089.

[^9]

Wireless World

ADVERTISEMENT OF THE TELEGRAPH CONDENSER CO., LTD

[^0]: 4 STANLEY RD., HEATON MOOR, STOCKPORT. 'Phone : Eeatonmoor 3107

[^1]: HIVAC LIMITED. Greenhill Crescent, Harrow on the Hill. Middx. Phone: HA, OW

[^2]: *See "Fundamentals of Radio," by F. E Terman, p. 433.

[^3]: * See "RF Pentodes as AF Amplifiers," Wireless World, July, 1944.

[^4]: ${ }^{1}$ The Scrvices Radio Components Book, published by The British Standards Institution.

[^5]: Wireless Engineer, June, 1935.

[^6]: 1"Towards Synthetic Music" ; Wireless World, September 1944
 2 " The Physics of Music," pp. 2x4-r5.
 s Vide Jeans, J., "Music and Science," p.r3.
 ${ }^{4}$ Jeans, J., Op. Cit. p. 190.

[^7]: ${ }^{1}$ See Scroggie: "Radio Laboratory Handbook" Section 35, and Wireless Engineer, October 1933

[^8]: VORTEXION LTD 257. THE BROADWAY. WIMBLEDON, S. W. 19. Phone: L/Berty 2814

[^9]:

